Patents by Inventor Huping Luo

Huping Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140024874
    Abstract: Disclosed herein are processes in which precipitation permits removal of metal halides (e.g. AlCl3) from ionic liquids. After precipitation, the precipitated metal halides can be physically separated from the bulk ionic liquid. More effective precipitation can be achieved through cooling or the combination of cooling and the provision of metal halide seed crystals. The ionic liquids can be regenerated ionic liquid catalysts, which contain excess metal halides after regeneration. Upon removal of the excess metal halides, they can be reused in processes using ionic liquid catalysts, such as alkylation processes.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 23, 2014
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Moinuddin Ahmed, Huping Luo, Krishniah Parimi, Bong-Kyu Chang, Sara Lindsay
  • Publication number: 20130274533
    Abstract: Disclosed herein are processes in which precipitation permits removal of metal halides (e.g. AlCl3) from ionic liquids. After precipitation, the precipitated metal halides can be physically separated from the bulk ionic liquid. More effective precipitation can be achieved through cooling or the combination of cooling and the provision of metal halide seed crystals. The ionic liquids can be regenerated ionic liquid catalysts, which contain excess metal halides after regeneration. Upon removal of the excess metal halides, they can be reused in processes using ionic liquid catalysts, such as alkylation processes.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 17, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventors: Moinuddin Ahmed, Huping Luo, Krishniah Parimi, Bong-Kyu Chang, Sara Lindsay
  • Patent number: 8541638
    Abstract: Disclosed herein are processes in which precipitation permits removal of metal halides (e.g. AlCl3) from ionic liquids. After precipitation, the precipitated metal halides can be physically separated from the bulk ionic liquid. More effective precipitation can be achieved through cooling or the combination of cooling and the provision of metal halide seed crystals. The ionic liquids can be regenerated ionic liquid catalysts, which contain excess metal halides after regeneration. Upon removal of the excess metal halides, they can be reused in processes using ionic liquid catalysts, such as alkylation processes.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: September 24, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Moinuddin Ahmed, Huping Luo, Krishniah Parimi, Bong-Kyu Chang, Sara Lindsay
  • Publication number: 20130066130
    Abstract: Ionic liquid alkylation processes may comprise contacting at least one hydrocarbon stream with an ionic liquid catalyst in an ionic liquid alkylation zone under ionic liquid alkylation conditions, cooling at least one of a reactor effluent and a hydrocarbon phase of the reactor effluent, and recycling the cooled reactor effluent or cooled hydrocarbon phase to the ionic liquid alkylation zone. Ionic liquid alkylation systems for performing ionic liquid catalyzed alkylation processes are also disclosed.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 14, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed
  • Publication number: 20130004378
    Abstract: This application provides a process unit for the production of alkylate gasoline, comprising: a) a nozzle having an orifice that dispenses one or more recirculated streams comprising ionic liquid catalyst into a chamber in the nozzle, b) a conduit for introducing a hydrocarbon feed stream comprising an olefin to the orifice at a close distance from the orifice; and c) a throat connecting the chamber in the nozzle to an alkylation zone. The process unit can have multiple Venturi nozzles.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Publication number: 20120287749
    Abstract: Exemplary embodiments include an apparatus for imaging a volume of material contained inside a vessel. The apparatus includes a plurality of synchronized acoustic sensors positioned at a periphery of an inner volume of the vessel. A processor combines the outputs of the acoustic sensors to identify at least one ambient noise source of the industrial process generating a noise field that illuminates an internal volume of the vessel and to provide an image of the material by temporal and spatial coherent processing of the transmission and reflection of the noise field generated by the noise source.
    Type: Application
    Filed: May 13, 2011
    Publication date: November 15, 2012
    Applicant: CHEVRON CORPORATION
    Inventors: Roy Lester Kutlik, Mahmoud Farhadiroushan, Tom Richard Parker, Huping Luo, Daniel Finfer
  • Patent number: 8198499
    Abstract: A process for a liquid/liquid reaction employs a nozzle dispersion whereby liquid reactants and liquid catalyst are injected through at least one nozzle into a reaction zone to effect a reaction. The reaction can be alkylation of at least one isoparaffin with at least one olefin in the presence of an ionic liquid catalyst. The at least one nozzle provides intimate contact between the phases for greater product control and reaction control.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: June 12, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Abdenour Kemoun, Hye-Kyung Timken
  • Patent number: 8183425
    Abstract: Provided is a process for producing low volatility, high quality gasoline blending components from a number of isoparaffin feed streams, olefin feed streams, and ionic liquid catalyst streams. The process entails providing an isoparaffin feed stream comprising isoparaffins, an olefin feed stream comprising olefins, and a catalyst stream comprising ionic liquid catalyst, and subsequently splitting at least the reactive olefin feed stream for feeding into the reaction zone at different locations.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: May 22, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Abdenour Kemoun, Hye-Kyung Timken
  • Publication number: 20120074042
    Abstract: Disclosed are embodiments relating to a process for reducing the total acid number of a hydrocarbon feed by contacting the feed with a metal titanate catalyst having an MTiO3 structure wherein M is a metal having a valence of 2+, resulting in a hydrocarbon product having a final total acid number lower than the initial total acid number of the feed. The process is useful for pretreating high acid crudes prior to further processing thus avoiding corrosion of equipment used in refining operations. The process can be integrated into conventional refining operations in order to treat various refinery streams. In one embodiment, a process is provided for refining a low acid crude oil and a high acid crude oil by separately introducing a relatively low acid crude oil feed and a relatively high acid crude oil feed to an atmospheric distillation column, wherein the relatively high acid crude oil feed is contacted with a metal titanate catalyst prior to introduction to the atmospheric distillation column.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Inventors: Shabbir Husain, Lin Li, Zhen Zhou, Alexander E. Kuperman, Zunqing He, Huping Luo
  • Patent number: 8088338
    Abstract: Disclosed are a system and an apparatus for regenerating an ionic liquid catalyst, which has been deactivated by conjunct polymers during any type of reaction producing conjunct polymers as a by-product, for example, isoparaffin-olefin alkylation. The system and apparatus are designed such that solvent extraction of conjunct polymers, freed from the ionic liquid catalyst through its reaction with aluminum metal, occurs as soon as the conjunct polymers de-bond from the ionic liquid catalyst.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: January 3, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Publication number: 20110297618
    Abstract: A process for the filtration of an ionic liquid involves feeding an ionic liquid containing precipitated metal halides to a first filtering zone, which includes at least one first filter, to provide a partially filtered product. The process further includes subsequently feeding the partially filtered product to a second filtering zone, which includes at least one second filter having a smaller pore size than the at least one first filter, to provide a filtered product. A filter system capable of filtering precipitated metal halides from ionic liquid is also disclosed.
    Type: Application
    Filed: August 17, 2011
    Publication date: December 8, 2011
    Applicant: CHEVRON U.S.A. INC.
    Inventors: Huping LUO, Moinuddin AHMED, Kris PARIMI, Bong-Kyu CHANG, Sara LINDSAY
  • Patent number: 8067656
    Abstract: A process for separating an ionic liquid from hydrocarbons employs a coalescer material having a stronger affinity for the ionic liquid than the hydrocarbons. The coalescer material can be a high surface area material having a large amount of contact area to which ionic liquid droplets dispersed in the hydrocarbons may adhere. The process includes feeding a mixture comprising ionic liquid droplets dispersed in hydrocarbons to a coalescer comprising the coalescer material. The process further includes a capture step involving adhering at least a portion of the ionic liquid droplets to the coalescer material to provide captured droplets and a coalescing step involving coalescing captured droplets into coalesced droplets. After the capture and coalescence steps, the coalesced droplets are allowed to fall from the coalescer material to separate the ionic liquid from the hydrocarbons and provide a hydrocarbon effluent.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: November 29, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Publication number: 20110282114
    Abstract: This application provides a process for the production of alkylate blending components, comprising introducing a hydrocarbon feed stream comprising an olefin to an orifice of a nozzle, at a close distance from the orifice; and wherein the nozzle dispenses a mixture of one or more recirculated streams and the hydrocarbon feed stream through a throat of the nozzle to make alkylate gasoline blending components. This application also provides a process unit for the production of alkylate gasoline, comprising: a) a nozzle having an orifice that dispenses one or more recirculated streams comprising ionic liquid catalyst into a chamber in the nozzle, b) a conduit for introducing a hydrocarbon feed stream comprising an olefin to the orifice at a close distance from the orifice; and c) a throat connecting the chamber in the nozzle to an alkylation zone.
    Type: Application
    Filed: May 14, 2010
    Publication date: November 17, 2011
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Patent number: 7955999
    Abstract: Disclosed are a system and an apparatus for regenerating an ionic liquid catalyst, which has been deactivated by conjunct polymers during any type of reaction producing conjunct polymers as a by-product, for example, isoparaffin-olefin alkylation. The system and apparatus are designed such that solvent extraction of conjunct polymers, freed from the ionic liquid catalyst through its reaction with aluminum metal, occurs as soon as the conjunct polymers de-bond from the ionic liquid catalyst.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: June 7, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Publication number: 20100278699
    Abstract: An apparatus for regenerating an ionic liquid catalyst comprising a reactive extraction column, the reactive extraction column comprising: (a) an upper feed port, wherein a slurry of an ionic liquid catalyst and an aluminum metal enter the reactive extraction column; (b) a lower feed port, wherein a solvent and optionally a hydrogen gas enter the reactive extraction column; (c) a moveable bed comprised of the aluminum metal between the upper and lower feed ports, wherein the ionic liquid catalyst and the aluminum metal reacts to free conjunct polymers from the ionic liquid catalyst and some of the freed conjunct polymers are extracted from the ionic liquid catalyst by the solvent to provide regenerated ionic liquid catalyst; (d) a lower exit port, wherein the regenerated ionic liquid catalyst exits the reactive extraction column; and (e) an upper exit port, wherein the solvent and freed conjunct polymers exit the reactive extraction column.
    Type: Application
    Filed: March 17, 2010
    Publication date: November 4, 2010
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Kyu Chang
  • Publication number: 20100172806
    Abstract: Disclosed are a system and an apparatus for regenerating an ionic liquid catalyst, which has been deactivated by conjunct polymers during any type of reaction producing conjunct polymers as a by-product, for example, isoparaffin-olefin alkylation. The system and apparatus are designed such that solvent extraction of conjunct polymers, freed from the ionic liquid catalyst through its reaction with aluminum metal, occurs as soon as the conjunct polymers de-bond from the ionic liquid catalyst.
    Type: Application
    Filed: March 18, 2010
    Publication date: July 8, 2010
    Applicant: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Bong-Hyu Chang
  • Publication number: 20100140142
    Abstract: A crude oil which contains at least 0.1 wt % unstable sulfur compounds is treated in a reaction zone at low temperature to convert at least 50 wt % of the unstable sulfur compounds contained therein. The reaction and removal of sulfur from the crude may be facilitated by contacting the crude oil with a catalytic material in the presence of a stripping fluid.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 10, 2010
    Inventors: Huping Luo, Zhen Zhon, Lin Li, Alice He, Daniel Chinn, Graham Forder, Lyman Young, Shabbir Husain, William Schinski
  • Patent number: 7732364
    Abstract: A regeneration process for re-activating an ionic liquid catalyst, which is useful in a variety of reactions, especially alkylation reactions, and which has been deactivated by conjunct polymers. The process includes a reaction step and a solvent extraction step. The process comprises (a) providing the ionic liquid catalyst, wherein at least a portion of the ionic liquid catalyst is bound to conjunct polymers; and (b) reacting the ionic liquid catalyst with aluminum metal to free the conjunct polymers from the ionic liquid catalyst in a stirred reactor or a fixed reactor. The conjunct polymer is then separated from the catalyst phase by solvent extraction in a stirred extraction or packed column.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: June 8, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bong-Kyu Chang, Huping Luo, Moinuddin Ahmed, Krishniah Parimi, Saleh Elomari
  • Publication number: 20100126948
    Abstract: A process for the filtration of an ionic liquid involves feeding an ionic liquid containing precipitated metal halides to a first filtering zone, which includes at least one first filter, to provide a partially filtered product. The process further includes subsequently feeding the partially filtered product to a second filtering zone, which includes at least one second filter having a smaller pore size than the at least one first filter, to provide a filtered product. A filter system capable of filtering precipitated metal halides from ionic liquid is also disclosed.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 27, 2010
    Applicant: Chevron U.S.A. Inc.
    Inventors: Huping Luo, Moinuddin Ahmed, Kris Parimi, Bong-Kyu Chang, Sara Lindsay
  • Publication number: 20100130799
    Abstract: Disclosed herein are processes in which precipitation permits removal of metal halides (e.g. AlCl3) from ionic liquids. After precipitation, the precipitated metal halides can be physically separated from the bulk ionic liquid. More effective precipitation can be achieved through cooling or the combination of cooling and the provision of metal halide seed crystals. The ionic liquids can be regenerated ionic liquid catalysts, which contain excess metal halides after regeneration. Upon removal of the excess metal halides, they can be reused in processes using ionic liquid catalysts, such as alkylation processes.
    Type: Application
    Filed: November 26, 2008
    Publication date: May 27, 2010
    Applicant: Chevron U.S.A. Inc.
    Inventors: Moinuddin Ahmed, Huping Luo, Krishniah Parimi, Bong-Kyu Chang, Sara Lindsay