Patents by Inventor Hushan Xu

Hushan Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10699818
    Abstract: Embodiments of the present invention provide a heat exchange medium comprising solid particles and a fluid. Embodiments of the present invention also provide a heat exchange system comprising the abovementioned heat exchange medium, a first heat exchanger, a mixing device disposed upstream of the first heat exchanger and configured to mix the solid particles and the fluid of the heat exchange medium and convey the mixed heat exchange medium to the first heat exchanger, a separating device disposed downstream of the first heat exchanger and configured to separate the solid particles from the fluid in the mixed heat exchange medium discharged by the first heat exchanger, a second heat exchanger, and a first conveying device configured to convey the solid particles separated by the separating device to the mixing device after having passed the separated solid particles through the second heat exchanger.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: June 30, 2020
    Assignee: Institute of Modern Physics, Chinese Academy of Sciences
    Inventors: Wenlong Zhan, Lei Yang, Hushan Xu
  • Patent number: 10645792
    Abstract: A target device for a neutron generating device, an accelerator-excited neutron generating device, and a beam coupling method thereof are disclosed. The target device comprises a plurality of solid particles serving as a target body; and a target body reaction chamber for accommodating the solid particles. With the accelerator-excited neutron generating device and the beam coupling method according to the present invention, the solid particles which are being circulated and situated outside the target body reaction chamber are processed, thereby overcoming defects in the prior art such as low-efficiency heat exchange, a short life time, a bad stability and a narrow application range, and achieving the advantages of high-efficiency heat exchange, a long life time, a good stability and a wide application range.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: May 5, 2020
    Assignee: Institute of Modern Physics, Chinese Academy of Sciences
    Inventors: Wenlong Zhan, Lei Yang, Hushan Xu
  • Publication number: 20150200024
    Abstract: Embodiments of the present invention provide a heat exchange medium comprising solid particles and a fluid. Embodiments of the present invention also provide a heat exchange system comprising the abovementioned heat exchange medium, a first heat exchanger, a mixing device disposed upstream of the first heat exchanger and configured to mix the solid particles and the fluid of the heat exchange medium and convey the mixed heat exchange medium to the first heat exchanger, a separating device disposed downstream of the first heat exchanger and configured to separate the solid particles from the fluid in the mixed heat exchange medium discharged by the first heat exchanger, a second heat exchanger, and a first conveying device configured to convey the solid particles separated by the separating device to the mixing device after having passed the separated solid particles through the second heat exchanger.
    Type: Application
    Filed: May 7, 2013
    Publication date: July 16, 2015
    Inventors: Wenlong Zhan, Lei Yang, Hushan Xu
  • Publication number: 20150181689
    Abstract: A target device for a neutron generating device, an accelerator-excited neutron generating device, and a beam coupling method thereof are disclosed. The target device comprises a plurality of solid particles serving as a target body; and a target body reaction chamber for accommodating the solid particles. With the accelerator-excited neutron generating device and the beam coupling method according to the present invention, the solid particles which are being circulated and situated outside the target body reaction chamber are processed, thereby overcoming defects in the prior art such as low-efficiency heat exchange, a short life time, a bad stability and a narrow application range, and achieving the advantages of high-efficiency heat exchange, a long life time, a good stability and a wide application range.
    Type: Application
    Filed: March 4, 2013
    Publication date: June 25, 2015
    Inventors: Wenlong Zhan, Lei Yang, Hushan Xu