Patents by Inventor Huyen Tran

Huyen Tran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220032293
    Abstract: The invention is directed to devices and methods for performing rapid low-cost bioassays in self-contained disposable cartridges that provide efficient mixing of sample and reactants under a layer of liquid wax. Some embodiments additionally use gravity assisted distribution of sample and assay reagents in conjunction with an appliance containing all necessary valves, pneumatic sources, heat sources and detection stations.
    Type: Application
    Filed: December 21, 2020
    Publication date: February 3, 2022
    Inventors: Arturo M. Escajeda, Huyen Tran, Ming X. Tan
  • Publication number: 20220032294
    Abstract: The invention is directed to devices and methods for performing rapid low-cost bioassays in self-contained disposable cartridges that provide efficient mixing of sample and reactants under a layer of liquid wax. Some embodiments additionally use gravity assisted distribution of sample and assay reagents in conjunction with an appliance containing all necessary valves, pneumatic sources, heat sources and detection stations.
    Type: Application
    Filed: January 26, 2021
    Publication date: February 3, 2022
    Inventors: Arturo M. Escajeda, Huyen Tran, Ming X. Tan
  • Patent number: 11103523
    Abstract: The invention provides amphiphilic liquid crystalline brush block copolymers that can readily self-assemble to nanoparticles in aqueous solutions and also allow for encapsulation of hydrophobic pharmaceutically active molecules.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: August 31, 2021
    Assignee: University of Connecticut
    Inventors: Xiuling Lu, Rajeswari Kasi, Thanh-Huyen Tran, Chi Thanh Nguyen, Prashant Deshmukh
  • Patent number: 10738983
    Abstract: A luminaire includes a support, a housing, and an adjustment assembly. The housing has at least one light emitter and is pivotably coupled to the support. The adjustment assembly has a pivoting member and a fastening member. The pivoting member is supported for movement relative to the bracket. The fastening member is coupled to the pivoting member and the housing.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: August 11, 2020
    Assignee: Hubbell Incorporated
    Inventors: Chau Huyen Tran Dinh, Kevin Lu, Syed Raza, Dean DalPonte
  • Patent number: 10589397
    Abstract: A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: March 17, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Alain Duboust, Wen-Chiang Tu, Shih-Haur Shen, Jimin Zhang, Ingemar Carlsson, Boguslaw A. Swedek, Zhihong Wang, Stephen Jew, David H. Mai, Huyen Tran
  • Publication number: 20200024322
    Abstract: The present invention relates to compounds having activity at both the human glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptors. The present invention also relates to compounds having an extended duration of action at each of these receptors. Furthermore, the present invention relates to compounds that may be administered orally. Compounds may be useful in the treatment of type 2 diabetes mellitus (“T2DM”). Also, the compounds may be useful in the treatment of obesity.
    Type: Application
    Filed: July 22, 2019
    Publication date: January 23, 2020
    Inventors: Milata Mary Abraham, Jorge Alsina-Fernandez, Robert Andrew Brown, Over Cabrera, Tamer Coskun, Robert Chadwick Cummins, Mohamed ElSayed Hamed Elsayed, Hongchang Qu, James Lincoln Wallis, Kyle Wynn Sloop, Francis Stafford Willard, Thi Thanh Huyen Tran, Aktham Aburub, Phenil Jayantilal Patel, Amita Datta-Mannan, Xianyin Lai
  • Publication number: 20190234594
    Abstract: A luminaire includes a support, a housing, and an adjustment assembly. The housing has at least one light emitter and is pivotably coupled to the support. The adjustment assembly has a pivoting member and a fastening member. The pivoting member is supported for movement relative to the bracket. The fastening member is coupled to the pivoting member and the housing.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 1, 2019
    Inventors: Chau Huyen Tran Dinh, Kevin Lu, Syed Raza, Dean DalPonte
  • Patent number: 9975983
    Abstract: The disclosure provides biodegradable amphiphilic liquid crystalline copolymers that can readily self-assemble to nanoparticles in aqueous solutions and also allow for encapsulation of hydrophobic pharmaceutically active molecules.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: May 22, 2018
    Assignee: University of Connecticut
    Inventors: Xiuling Lu, Rajeswari Kasi, Thanh-Huyen Tran, Chi Thanh Nguyen
  • Publication number: 20170240680
    Abstract: The disclosure provides biodegradable amphiphilic liquid crystalline copolymers that can readily self-assemble to nanoparticles in aqueous solutions and also allow for encapsulation of hydrophobic pharmaceutically active molecules.
    Type: Application
    Filed: October 15, 2015
    Publication date: August 24, 2017
    Inventors: Xiuling LU, Rajeswari KASI, Thanh-Huyen TRAN, Chi Thanh NGUYEN
  • Publication number: 20170151647
    Abstract: A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
    Type: Application
    Filed: February 3, 2017
    Publication date: June 1, 2017
    Applicant: Applied Materials, Inc.
    Inventors: Alain Duboust, Wen-Chiang Tu, Shih-Haur Shen, Jimin Zhang, Ingemar Carlsson, Boguslaw A. Swedek, Zhihong Wang, Stephen Jew, David H. Mai, Huyen Tran
  • Publication number: 20160243141
    Abstract: The invention provides amphiphilic liquid crystalline brush block copolymers that can readily self-assemble to nanoparticles in aqueous solutions and also allow for encapsulation of hydrophobic pharmaceutically active molecules.
    Type: Application
    Filed: October 7, 2014
    Publication date: August 25, 2016
    Inventors: Xiuling LU, Rajeswari KASI, Thanh-Huyen TRAN, Chi Thanh NGUYEN, Prashant DESHMUKH
  • Publication number: 20140222188
    Abstract: A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Alain Duboust, Wen-Chiang Tu, Shih-Haur Shen, Jimin Zhang, Ingemar Carlsson, Boguslaw A. Swedek, Zhihong Wang, Stephen Jew, David H. Mai, Huyen Tran
  • Patent number: 8694144
    Abstract: A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: April 8, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Alain Duboust, Stephen Jew, David H. Mai, Huyen Tran, Wen-Chiang Tu, Shih-Haur Shen, Jimin Zhang, Ingemar Carlsson, Boguslaw A. Swedek, Zhihong Wang
  • Publication number: 20140030956
    Abstract: A polishing method includes positioning two substrates in contact with the same polishing pad. Prior to commencement of polishing and while the two substrates are in contact with the polishing pad, two starting values are generated from an in-situ monitoring system. Either a starting polishing time or a pressure applied to one of the substrates can be adjusted so that the two substrates have closer endpoint conditions. During polishing the two substrates are monitored with the in-situ monitoring system to generate a two sequences of values, and a polishing endpoint can be detected or an adjustment for a polishing parameter can be based on the two sequences of values.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Inventors: Jimin Zhang, Jose Salas-Vernis, Ingemar Carlsson, David H. Mai, Huyen Tran, Zhihong Wang, Wen-Chiang Tu, Stephen Jew, Boguslaw A. Swedek, Shih-Haur Shen, James C. Wang, Yen-Chu Yang
  • Publication number: 20120053717
    Abstract: A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Inventors: Alain Duboust, Stephen Jew, David H. Mai, Huyen Tran, Wen-Chiang Tu, Shih-Haur Shen, Jimin Zhang, Ingemar Carlsson, Boguslaw A. Swedek, Zhihong Wang
  • Publication number: 20070102303
    Abstract: Polishing compositions and methods for removing conductive materials from a substrate surface are provided. The method includes providing a substrate comprising dielectric feature definitions, a barrier material disposed in the feature definitions, and a bulk conductive material disposed on the barrier material in an amount sufficient to fill feature definitions; polishing the substrate to substantially remove the bulk conductive material; polishing a residual conductive material to expose feature definitions, comprising: applying a first voltage for a first time period, wherein the first voltage is less than the critical voltage; and applying a second voltage for a second time period, wherein the second voltage is greater than the critical voltage.
    Type: Application
    Filed: November 3, 2006
    Publication date: May 10, 2007
    Inventors: HUYEN TRAN, RENHE JIA, YOU WANG, STAN TSAI, MARTIN WOHLERT, DAXIN MAO
  • Publication number: 20060196778
    Abstract: Methods for polishing tungsten are provided. During ECMP, increasing the voltage to the pad is not always enough to increase the polishing rate. When polishing tungsten, simply increasing the applied voltage will, in some cases, actually decrease the removal rate. By increasing the down force pressure between the polishing pad and the substrate, the applied voltage, and the rotation speed of the substrate and the polishing pad, the tungsten removal rate will also increase.
    Type: Application
    Filed: January 27, 2006
    Publication date: September 7, 2006
    Inventors: Renhe Jia, Zhihong Wang, Yuan Tian, Huyen Tran, Daxin Mao, Stan Tsai, Lakshmanan Karuppiah, Liang-Yuh Chen
  • Publication number: 20060046623
    Abstract: Embodiments of a conditioning head for in-situ conditioning and/or cleaning a processing pad of a CMP, ECMP, or other processing system are provided. In one embodiment, the conditioning head includes a brush disposed in a central cavity. A cleaning fluid is provided through the central cavity of the conditioning head to a processing pad. The brush spins and moves laterally across the surface of the processing pad. The cleaning solution dispensed through the conditioning head dissolves by-products of the processing operation while the brush gently wipes the processing pad. A lip of the conditioning head retains the cleaning fluid and cleaning waste, thereby minimizing contamination of the area outside of the conditioning head. The cleaning waste is removed from the processing pad via passages formed near the outer periphery of the conditioning head.
    Type: Application
    Filed: August 22, 2005
    Publication date: March 2, 2006
    Inventors: Yan Wang, Stan Tsai, Yongqi Hu, Feng Liu, Liang-Yuh Chen, Daxin Mao, Huyen Tran, Martin Wohlert, Renhe Jia, Yuan Tian
  • Patent number: 6274058
    Abstract: A processing chamber cleaning method is described which utilizes microwave energy to remotely generate a reactive species to be used alone or in combination with an inert gas to remove deposits from a processing chamber. The reactive species can remove deposits from a first processing region at a first pressure and then remove deposits from a second processing region at a second pressure. Also described is a cleaning process utilizing remotely generated reactive species in a single processing region at two different pressures. Additionally, different ratios of reactive gas and inert gas may be utilized to improve the uniformity of the cleaning process, increase the cleaning rate, reduce recombination of reactive species and increase the residence time of reactive species provided to the processing chamber.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: August 14, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Ravi Rajagopalan, Patricia M. Liu, Pravin K. Narwankar, Huyen Tran, Padmanabhan Krishnaraj, Alan Ablao, Tim Casper
  • Patent number: D872342
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: January 7, 2020
    Assignee: Hubbell Incorporated
    Inventors: Chau Huyen Tran Dinh, Kevin Lu, Syed Raza, Dean DalPonte, Armin Ahrari, Benjamin Peirick