Patents by Inventor Hwan-Jin Jeon

Hwan-Jin Jeon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160089723
    Abstract: A method of fabricating nanostructures using macro pre-patterns according to the present invention, which comprises either depositing a target material on a substrate having macro pre-patterns formed thereon, or applying a target material to a substrate and then forming macro pre-patterns on the substrate, and then depositing the target material on the side surface of the macro pre-patterns by an ion bombardment phenomenon occurring during etching, provides a three-dimensional nanostructures with high aspect ratio and uniformity can be fabricated by a simple process at low cost by using the ion bombardment phenomenon occurring during physical ion etching, thereby achieving the high performance of future nano-devices, such as nanosized electronic devices, optical devices, bio devices and energy devices.
    Type: Application
    Filed: October 27, 2015
    Publication date: March 31, 2016
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hee-Tae JUNG, Hwan-Jin JEON, Kyoung-Hwan KIM, Youn-Kyoung BAEK
  • Patent number: 9180519
    Abstract: A three-dimensional nanostructures and a method for fabricating the same, and more particularly to three-dimensional structures of various shapes having high aspect ratio and uniformity in large area and a method of fabricating the same by attaching a target material to the outer surface of patterned polymer structures using an ion bombardment phenomenon occurring during a physical ion etching process to form target material-polymer composite structures, and then removing the polymer from the target material-polymer structures. A three-dimensional nanostructures with high aspect ratio and uniformity can be fabricated by a simple process at low cost by using the ion bombardment phenomenon occurring during physical ion etching. Also, nanostructures of various shapes can be easily fabricated by controlling the pattern and shape of polymer structures. In addition, uniform fine nanostructures having a thickness of 10 nm or less can be formed in a large area.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: November 10, 2015
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Hee-Tae Jung, Hwan-Jin Jeon, Kyoung-Hwan Kim, Youn-Kyoung Baek
  • Publication number: 20150060392
    Abstract: A three-dimensional nanostructures and a method for fabricating the same, and more particularly to three-dimensional structures of various shapes having high aspect ratio and uniformity in large area and a method of fabricating the same by attaching a target material to the outer surface of patterned polymer structures using an ion bombardment phenomenon occurring during a physical ion etching process to form target material-polymer composite structures, and then removing the polymer from the target material-polymer structures. A three-dimensional nanostructures with high aspect ratio and uniformity can be fabricated by a simple process at low cost by using the ion bombardment phenomenon occurring during physical ion etching. Also, nanostructures of various shapes can be easily fabricated by controlling the pattern and shape of polymer structures. In addition, uniform fine nanostructures having a thickness of 10 nm or less can be formed in a large area.
    Type: Application
    Filed: October 10, 2014
    Publication date: March 5, 2015
    Applicant: Korea Advanced Institute of Science and Technology
    Inventors: Hee-Tae JUNG, Hwan-Jin Jeon, Kyoung-Hwan Kim, Youn-Kyoung Baek
  • Patent number: 8889245
    Abstract: A three-dimensional nanostructures and a method for fabricating the same, and more particularly to three-dimensional structures of various shapes having high aspect ratio and uniformity in large area and a method of fabricating the same by attaching a target material to the outer surface of patterned polymer structures using an ion bombardment phenomenon occurring during a physical ion etching process to form target material-polymer composite structures, and then removing the polymer from the target material-polymer structures. A three-dimensional nanostructures with high aspect ratio and uniformity can be fabricated by a simple process at low cost by using the ion bombardment phenomenon occurring during physical ion etching. Also, nanostructures of various shapes can be easily fabricated by controlling the pattern and shape of polymer structures. In addition, uniform fine nanostructures having a thickness of 10 nm or less can be formed in a large area.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: November 18, 2014
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Hee-Tae Jung, Hwan-Jin Jeon, Kyoung-Hwan Kim, Youn-Kyoung Baek
  • Publication number: 20110318535
    Abstract: A three-dimensional nanostructures and a method for fabricating the same, and more particularly to three-dimensional structures of various shapes having high aspect ratio and uniformity in large area and a method of fabricating the same by attaching a target material to the outer surface of patterned polymer structures using an ion bombardment phenomenon occurring during a physical ion etching process to form target material-polymer composite structures, and then removing the polymer from the target material-polymer structures. A three-dimensional nanostructures with high aspect ratio and uniformity can be fabricated by a simple process at low cost by using the ion bombardment phenomenon occurring during physical ion etching. Also, nanostructures of various shapes can be easily fabricated by controlling the pattern and shape of polymer structures. In addition, uniform fine nanostructures having a thickness of 10 nm or less can be formed in a large area.
    Type: Application
    Filed: April 6, 2011
    Publication date: December 29, 2011
    Inventors: Hee-Tae JUNG, Hwan-Jin Jeon, Kyoung-Hwan Kim, Youn-Kyoung Baek