Patents by Inventor Hyacinth L. Lechuga

Hyacinth L. Lechuga has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240066473
    Abstract: The present disclosure provides an article including an isoporous membrane disposed on a porous substrate. The iso-porous membrane includes a triblock copolymer or a pentablock copolymer. The isoporous membrane has a thickness and is isoporous throughout its thickness. A method of making an article is also provided, which does not require a solvent exchange process. The method includes depositing a composition on a porous substrate, thereby forming a fdm, and removing at least a portion of the solvent from the film, thereby forming an isoporous membrane having numerous pores. The composition contains a solvent and solids including a triblock copolymer or a pentablock copolymer. The article advantageously can be hydrophilic and provides sharp molecular weight cut-offs and high flux.
    Type: Application
    Filed: December 8, 2020
    Publication date: February 29, 2024
    Inventors: Clinton P. Waller, Jr., Michelle M. Mok, Lucas D. McIntosh, Timothy M. Gillard, Carl A. Laskowski, Hyacinth L. Lechuga
  • Publication number: 20240001415
    Abstract: Films and articles are described comprising a microstructured surface having an array of peak structures and adjacent valleys. For improved cleanability, the valleys preferably have a maximum width ranging from 10 microns to 250 microns and the peak structures have a side wall angle greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-corners elements. The facets form continuous or semi-continuous surfaces in the same direction. The valleys typically lack intersecting walls. Also described are methods of making and methods of use. The microstructured surface of the article can be prepared by various microreplication techniques such as coating, injection molding, embossing, laser etching, extrusion, casting and curing a polymerizable resin; and bonding microstructured film to a surface or article with an adhesive.
    Type: Application
    Filed: January 25, 2022
    Publication date: January 4, 2024
    Inventors: Jodi L. Connell, Raymond P. Johnston, John J. Sullivan, Karl J.L. Geisler, Vivian W. Jones, Gordon A. Kuhnley, Patrick G. Zimmerman, Bradley W. Eaton, Kurt J. Halverson, Brian W. Lueck, Alexandr C. Eldredge, Hyacinth L. Lechuga, Lynn E. Lorimor, Diane R. Wolk, Junia M. Pereira, Caroline M. Yitalo, Linda W. Suszko, Daniel J. Rogers, Bryon A. Mrrill
  • Publication number: 20230405915
    Abstract: Films and articles are described comprising a microstructured surface having an array of peak structures and adjacent valleys. For improved cleanability, the valleys preferably have a maximum width ranging from 10 microns to 250 microns and the peak structures have a side wall angle greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-corners elements. The facets form continuous or semi-continuous surfaces in the same direction. The valleys typically lack intersecting walls. Also described are methods of making and methods of use. The microstructured surface of the article can be prepared by various microreplication techniques such as coating, injection molding, embossing, laser etching, extrusion, casting and curing a polymerizable resin; and bonding microstructured film to a surface or article with an adhesive.
    Type: Application
    Filed: August 10, 2023
    Publication date: December 21, 2023
    Inventors: Jodi L. Connell, Raymond P. Johnston, John J. Sullivan, Karl J.L. Geisler, Vivian W. Jones, Gordon A. Kuhnley, Patrick G. Zimmerman, Bradley W. Eaton, Kurt J. Halverson, Brian W. Lueck, Alexander C. Eldredge, Hyacinth L. Lechuga
  • Patent number: 11826779
    Abstract: Wet-on-wet coating processes are provided to produce multilayer articles. First and second coating materials are sequentially applied on to a structured substrate surface to form a skin layer directly over the structured substrate surface and a bulk layer over the skin layer. The conformability of the skin layer can be adjusted to provide desired surface and bulk properties.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: November 28, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Brittni M. Schiewer, Eric A. Vandre, Chris A. Pommer, Kara A. Meyers, Anish Kurian, Michelle Ji, Hyacinth L Lechuga, Ross E. Behling, Dong-Wei Zhu, Robert B. Secor, Mikhail L. Pekurovsky
  • Patent number: 11766822
    Abstract: Films and articles are described comprising a microstructured surface having an array of peak structures and adjacent valleys. For improved cleanability, the valleys preferably have a maximum width ranging from 10 microns to 250 microns and the peak structures have a side wall angle greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-corners elements. The facets form continuous or semi-continuous surfaces in the same direction. The valleys typically lack intersecting walls. Also described are methods of making and methods of use. The microstructured surface of the article can be prepared by various microreplication techniques such as coating, injection molding, embossing, laser etching, extrusion, casting and curing a polymerizable resin; and bonding microstructured film to a surface or article with an adhesive.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: September 26, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Jodi L. Connell, Raymond P. Johnston, John J. Sullivan, Karl J. L. Geisler, Vivian W. Jones, Gordon A. Kuhnley, Patrick G. Zimmerman, Bradley W. Eaton, Kurt J. Halverson, Brian W. Lueck, Alexander C. Eldredge, Hyacinth L. Lechuga
  • Publication number: 20230158557
    Abstract: Medical diagnostic devices or components thereof are described that comprise a microstructured surface that comprises peak structures and adjacent valleys wherein the valleys have a maximum width ranging from 1 to 1000 microns and the peak structures. In some embodiments (e.g. for improved cleanability) the peak structures of the microstructured surface have a side wall angle of greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-comers elements. The microstructured surface of the medical diagnostic device typically comes in contact with multiple patients during normal use of the device, such as a stethoscope diaphragm. The microstructured surface exhibits better microorganism (e.g. bacteria) removal when cleaned and/or provides a reduction in microbial touch transfer. Also described are methods of making and methods of use.
    Type: Application
    Filed: May 14, 2021
    Publication date: May 25, 2023
    Inventors: Jodi L. Connell, Raymond P. Johnston, Daniel J. Rogers, John J. Sullivan, Gordon A. Kuhnley, Brian W. Lueck, Alexander C. Eldredge, Kurt J. Halverson, Hyacinth L. Lechuga
  • Publication number: 20230057006
    Abstract: Wet-on-wet coating processes are provided to produce multilayer articles. First and second coating materials are sequentially applied on to a structured substrate surface to form a skin layer directly over the structured substrate surface and a bulk layer over the skin layer. The conformability of the skin layer can be adjusted to provide desired surface and bulk properties.
    Type: Application
    Filed: December 24, 2020
    Publication date: February 23, 2023
    Inventors: Brittni M. Schiewer, Eric A. Vandre, Chris A. Pommer, Kara A. Meyers, Anish Kurian, Michelle Ji, Hyacinth L. Lechuga, Ross E. Behling, Dong-Wei Zhu, Robert B. Secor, Mikhail L. Pekurovsky
  • Publication number: 20220088546
    Abstract: A porous membrane, The porous membrane includes a triblock copolymer of the formula ABC, the porous membrane comprising a plurality of pores; wherein the A block has a Tg of 90 degrees Celsius or greater and is present in an amount ranging from 30% to 80% by weight, inclusive, of the total block copolymer; wherein the B block has a Tg of 25 degrees Celsius or less and is present in an amount ranging from 10% to 40% by weight, inclusive, of the total block copolymer and wherein the C block is a water miscible hydrogen-bonding block immiscible with each of the A block and the B block; wherein the porous membrane comprising a first major surface and an opposed second major surface, wherein the first major surface is a nanostructured surface.
    Type: Application
    Filed: March 24, 2020
    Publication date: March 24, 2022
    Inventors: Michelle M. Mok, Timothy M. Gillard, Carl A. Laskowski, Lucas D. McIntosh, Hyacinth L. Lechuga
  • Publication number: 20210403626
    Abstract: Curable compositions include at least one fluoropolymer, at least one monofunctional (meth)acrylate, at least one difunctional (meth)acrylate, and at least one initiator. The curable composition, when cured, forms an optically-scattering layer including a matrix and phase separated microdomains. The matrix and the phase separated microdomains have different refractive indices, and the microdomains are on the order of or larger than the wavelengths of visible light.
    Type: Application
    Filed: August 13, 2019
    Publication date: December 30, 2021
    Inventors: Evan L. Schwartz, Mark J. Pellerite, Brett J. Sitter, Liang Gong, Hyacinth L. Lechuga
  • Patent number: 11167251
    Abstract: The present disclosure provides a porous membrane made of pentablock copolymer. The porous membrane includes an ABCBA block copolymer and has a number of pores. The A block is immiscible with each of the B block and the C block, the B block has a glass transition temperature (Tg) of 90 degrees Celsius or greater, and the C block has a Tg of 25 degrees Celsius or less. The A block comprises a poly(alkylene oxide), a substituted epoxide, a polylactam, or a substituted carbonate; B block comprises a vinyl aromatic monomer or a polyalkylmethacrylate and C block comprises a polyacrylate, a polysiloxane or a polyisoprene. A method of making a porous membrane is also provided. The method includes forming a film or a hollow fiber from a solution including a solvent and solids containing an ABCBA block copolymer. The method further includes removing at least a portion of the solvent from the film or the hollow fiber and contacting the film or the hollow fiber with a nonsolvent.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: November 9, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Michelle M. Mok, Carl A. Laskowski, Lucas D. McIntosh, Hyacinth L. Lechuga, Timothy M. Gillard, Clinton P. Waller, Jr.
  • Publication number: 20210187819
    Abstract: Films and articles are described comprising a microstructured surface having an array of peak structures and adjacent valleys. For improved cleanability, the valleys preferably have a maximum width ranging from 10 microns to 250 microns and the peak structures have a side wall angle greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-corners elements. The facets form continuous or semi-continuous surfaces in the same direction. The valleys typically lack intersecting walls. Also described are methods of making and methods of use. The microstructured surface of the article can be prepared by various microreplication techniques such as coating, injection molding, embossing, laser etching, extrusion, casting and curing a polymerizable resin; and bonding microstructured film to a surface or article with an adhesive.
    Type: Application
    Filed: February 23, 2021
    Publication date: June 24, 2021
    Inventors: Jodi L. Connell, Raymond P. Johnston, John J. Sullivan, Karl J.L. Geisler, Vivian W. Jones, Gordon A. Kuhnley, Patrick G. Zimmerman, Bradley W. Eaton, Kurt J. Halverson, Brian W. Lueck, Alexander C. Eldredge, Hyacinth L. Lechuga
  • Patent number: 10756306
    Abstract: A nanostructured article having a first layer with a nanostructured surface is described. The nanostructured surface includes a plurality of pillars extending from a base surface of the first layer. The pillars have an average height greater than an average lateral dimension of the pillars. An average center-to-center spacing between pillars is no more than 2000 nm. The average lateral dimension is no less than 50 nm. Each pillar in the plurality of pillars has at least a lower portion and an upper portion where the lower portion is between the upper portion and the base surface, and the upper and lower portions have differing compositions. The nanostructured article includes a second layer disposed over the plurality of pillars and extending continuously to the base surface.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: August 25, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Nicholas C. Erickson, Moses M. David, Xiaoguang Sun, Manoj Nirmal, Haeen Sykora, Hui Luo, Samuel J. Carpenter, Jilliann M. Nelson, Justin P. Meyer, Bert T. Chien, David J. Rowe, Robert L. Brott, David G. Freier, Hyacinth L. Lechuga
  • Publication number: 20200047135
    Abstract: The present disclosure provides a porous membrane made of pentablock copolymer. The porous membrane includes an ABCBA block copolymer and has a number of pores. The A block is immiscible with each of the B block and the C block, the B block has a glass transition temperature (Tg) of 90 degrees Celsius or greater, and the C block has a Tg of 25 degrees Celsius or less. The A block comprises a poly(alkylene oxide), a substituted epoxide, a polylactam, or a substituted carbonate; B block comprises a vinyl aromatic monomer or a polyalkylmethacrylate and C block comprises a polyacrylate, a polysiloxane or a polyisoprene. A method of making a porous membrane is also provided. The method includes forming a film or a hollow fiber from a solution including a solvent and solids containing an ABCBA block copolymer. The method further includes removing at least a portion of the solvent from the film or the hollow fiber and contacting the film or the hollow fiber with a nonsolvent.
    Type: Application
    Filed: November 14, 2017
    Publication date: February 13, 2020
    Inventors: Michelle M. Mok, Carl A. Laskowski, Lucas D. McIntosh, Hyacinth L. Lechuga, Timothy M. Gillard, Clinton P. Waller, JR.
  • Publication number: 20190386251
    Abstract: A nanostructured article having a first layer with a nanostructured surface is described. The nanostructured surface includes a plurality of pillars extending from a base surface of the first layer. The pillars have an average height greater than an average lateral dimension of the pillars. An average center-to-center spacing between pillars is no more than 2000 nm. The average lateral dimension is no less than 50 nm. Each pillar in the plurality of pillars has at least a lower portion and an upper portion where the lower portion is between the upper portion and the base surface, and the upper and lower portions have differing compositions. The nanostructured article includes a second layer disposed over the plurality of pillars and extending continuously to the base surface.
    Type: Application
    Filed: October 17, 2017
    Publication date: December 19, 2019
    Inventors: Nicholas C. Erickson, Moses M. David, Xiaoguang Sun, Manoj Nirmal, Haeen Sykora, Hui Luo, Samuel J. Carpenter, Jilliann M. Nelson, Justin P. Meyer, Bert T. Chien, David J. Rowe, Robert L. Brott, David G. Freier, Hyacinth L. Lechuga
  • Patent number: 10312001
    Abstract: A composite layer including first and second layers is described. The first layer includes a plurality of metallic nanowires and the second layer includes a polymeric overcoat disposed on the nanowires. In top plan view, the composite layer has at least one first region and at least one second region, where the nanowires in each first region form an interconnected network of the nanowires, and each second region includes a plurality of nanotrenches through the second layer into the first layer.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: June 4, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Mark J. Pellerite, Seth M. Kirk, Hyacinth L. Lechuga
  • Patent number: 10213993
    Abstract: Described herein is composite article comprising a substrate; and on at least one face of the substrate a multilayered coating disposed thereon.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: February 26, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Kui Chen-Ho, Caroline M. Ylitalo, Yu Yang, Yongshang Lu, Alan L. Levin, Hyacinth L. Lechuga, Steven H. Kong, Suresh S. Iyer, Ingrid N. Haugan, Mahfuza B. Ali
  • Publication number: 20170278594
    Abstract: A composite layer including first and second layers is described. The first layer includes a plurality of metallic nanowires and the second layer includes a polymeric overcoat disposed on the nanowires. In top plan view, the composite layer has at least one first region and at least one second region, where the nanowires in each first region form an interconnected network of the nanowires, and each second region includes a plurality of nanotrenches through the second layer into the first layer.
    Type: Application
    Filed: June 12, 2017
    Publication date: September 28, 2017
    Inventors: Mark J. Pellerite, Seth M. Kirk, Hyacinth L. Lechuga
  • Patent number: 9711263
    Abstract: A method comprising: providing a transparent electrically conductive film comprising: a transparent substrate (14); a composite layer (18) comprising: an electrically conductive layer disposed on at least a portion of a major surface of the transparent substrate (14) and comprising a plurality of interconnecting metallic nanowires (12); and a polymeric overcoat layer disposed on a portion of the electrically conductive layer, to provide a coated area of the electrically conductive layer; and patternwise exposing the coated area of the electrically conductive layer to a corona discharge to provide a patternwise exposed electrically conductive film comprising (1) an un exposed region (122) of the coated region having a first electrical resistivity, and (2) an exposed region (121) having a second electrical resistivity; wherein the exposed region is less electrically conductive than the unexposed region, and wherein there is a ratio of the second electrical resistivity over the first electrical resistivity of at
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: July 18, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Mark J. Pellerite, Seth M. Kirk, Hyacinth L. Lechuga
  • Patent number: 9603242
    Abstract: A transparent electrical conductor (10; 20), comprising a transparent substrate (14; 201); a composite layer (18; 28) comprising an electrically conductive layer (12) disposed on at least a portion of a major surface of the transparent substrate (14; 201) and comprising a plurality of interconnecting metallic nanowires, and a polymeric overcoat layer (16) disposed on at least a portion of the electrically conductive layer (12); wherein a pattern in the composite layer includes an x-axis and a y-axis of an x-y plane of the composite layer and a z-axis into the x-y plane of the composite layer, and the pattern defines a plurality of electrically conductive regions (24, 24?) in the x-y plane of the composite layer (18; 28), wherein the electrically conductive regions (24, 24?) are separated from each other by electrically insulative traces (21), each of which defines a valley into the z-axis of the x-y plane of the composite layer (18; 28), the valley having a maximum depth (27) in a range from 50 nanometers to
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: March 21, 2017
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Mark J. Pellerite, John P. Baetzold, John J. Stradinger, Pingfan Wu, Hyacinth L. Lechuga, Manoj Nirmal
  • Publication number: 20160318287
    Abstract: Described herein is composite article comprising a substrate; and on at least one face of the substrate a multilayered coating disposed thereon.
    Type: Application
    Filed: December 16, 2014
    Publication date: November 3, 2016
    Inventors: Kui Chen-Ho, Caroline M. Ylitalo, Yu Yang, Yongshang Lu, Alan L. Levin, Hyacinth L. Lechuga, Steven H. Kong, Suresh I. Iyer, Ingrid N. Haugan, Mahfuza B. Ali