Patents by Inventor Hye Kyung C. Timken
Hye Kyung C. Timken has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20090163750Abstract: A method for reducing halide concentration in a hydrocarbon product made by a hydrocarbon conversion process using an ionic liquid catalyst comprising a halogen-containing an acidic ionic liquid comprising: (i) separating at least a portion of the hydrocarbon product from the ionic liquid catalyst used in the hydrocarbon conversion process from the hydrocarbon product; (ii) contacting at least a portion of the separated hydrocarbon product with an ionic liquid catalyst having the same formula as the ionic liquid catalyst used in the hydrocarbon conversion process; (iii) separating at least a portion of the hydrocarbon product from the ionic liquid catalyst of step (ii); and (iv) recovering at least a portion of the separated hydrocarbon product of step (iii) having a halide concentration less than the halide concentration of the hydrocarbon product of step (i) is disclosed.Type: ApplicationFiled: December 21, 2007Publication date: June 25, 2009Inventors: Hye-Kyung C. Timken, Michael S. Driver, Thomas V. Harris
-
Patent number: 7531707Abstract: A process for the production of a high quality gasoline blending components from refinery process streams by the alkylation of light isoparaffins with olefins using an ionic liquid catalyst is disclosed. The alkylation process comprises contacting a hydrocarbon mixture comprising at least one olefin having from 2 to 6 carbon atoms and at least one isoparaffin having from 3 to 6 carbon atoms under alkylation conditions, said catalyst comprising a mixture of at least one acidic ionic liquid and at least one alkyl halide. The alkylhalide by reacting to at least a portion of the olefin with a hydrogen halide.Type: GrantFiled: December 13, 2006Date of Patent: May 12, 2009Assignee: Chevron U.S.A., IncInventors: Thomas V. Harris, Michael Driver, Saleh Elomari, Hye-Kyung C. Timken
-
Publication number: 20090107032Abstract: A method for producing a low sulphur containing fuel from a hydrocarbon feed having from 10 to 80 ppm of sulphur is disclosed. The method comprises contacting a hydrocarbon stream comprising at least one olefin having from 2 to 6 carbon atoms and at least one paraffin having from 4 to 6 carbon atoms with an ionic liquid catalyst and a halide containing additive in an alkylation reaction zone under alkylating conditions to produce a fuel having sulphur content up to 10 ppm.Type: ApplicationFiled: October 31, 2007Publication date: April 30, 2009Inventors: Howard Lacheen, Hye-Kyung C. Timken
-
Patent number: 7485763Abstract: In a process for converting C9+ aromatic hydrocarbons to lighter aromatic products a feed comprising C9+ aromatic hydrocarbons is contacted under transalkylation reaction conditions with a catalyst composition comprising (i) a first molecular sieve selected from the group consisting of ZSM-12, mordenite and a porous crystalline inorganic oxide material having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07; and (ii) a second molecular sieve having a constraint index ranging from 3 to 12. At least the first molecular sieve has a hydrogenation component associated therewith and the first and second molecular sieves are contained in the same catalyst bed. The C9+ aromatic hydrocarbons are converted under the transalkylation reaction conditions to a reaction product containing xylene.Type: GrantFiled: November 3, 2006Date of Patent: February 3, 2009Assignee: ExxonMobil Chemical Patents Inc.Inventors: John Scott Buchanan, Ronald J. Cimini, Robert A. Crane, Wenyih F. Lai, Jose G. Santiesteban, David A. Stachelczyk, David L. Stern, Hye-Kyung C. Timken, William A. Weber
-
Patent number: 7432409Abstract: A process for the production of a high quality gasoline blending components from refinery process streams by the alkylation of light isoparaffins with olefins using an ionic liquid catalyst is disclosed. The process includes reacting a refinery stream containing isopentane and/or isobutane with a refinery stream containing ethylene and/or propylene and butylenes under alkylation conditions in the presence of a chloroaluminate ionic liquid catalyst comprising a hydrocarbyl substituted pyridinium chloroaluminate or a hydrocarbyl substituted imidazolium chloroaluminate of the general formulas A and B, respectively. Where R?H, methlyl, ethyl, propyl, butyl, pentyl or hexyl group and X is a chloroaluminate, and R1 and R2=H, methyl, ethyl, propyl, butyl, pentyl or hexyl group and where R1 and R2 may or may not be the same.Type: GrantFiled: December 21, 2004Date of Patent: October 7, 2008Assignee: Chevron U.S.A. Inc.Inventors: Saleh Elomari, Steve Trumbull, Hye Kyung C. Timken, Robert Cleverdon
-
Patent number: 7432408Abstract: An integrated refining process for the production of high quality gasoline blending components from low value components is disclosed. In addition there is disclosed a method of improving the operating efficiency of a refinery by reducing fuel gas production and simultaneously producing high quality gasoline blending components of low volatility. The processes involve the alkylation of a refinery stream containing pentane with ethylene using an ionic liquid catalyst.Type: GrantFiled: December 21, 2004Date of Patent: October 7, 2008Assignee: Chevron U.S.A. Inc.Inventors: Hye Kyung C. Timken, Saleh Elomari, Steve Trumbull, Robert Cleverdon
-
Publication number: 20080146858Abstract: A process for producing alkylate comprising contacting a first hydrocarbon stream comprising at least one olefin having from 2 to 6 carbon atoms which contains 1-butene with an isomerization catalyst under conditions favoring the isomerization of 1-butene to 2-butene so the isomerized stream contains a greater concentration of 2-butene than the first hydrocarbon stream and contacting the isomerized stream and a second hydrocarbon stream comprising at least one isoparaffin having from 3 to 6 carbon atoms with an acidic ionic liquid catalyst under alkylation conditions to produce an alkylate stream is disclosed.Type: ApplicationFiled: December 14, 2006Publication date: June 19, 2008Inventors: Saleh Elomari, Hye-Kyung C. Timken
-
Publication number: 20080142413Abstract: A process for the production of a high quality gasoline blending components from refinery process streams by the alkylation of light isoparaffins with olefins using an ionic liquid catalyst is disclosed. The alkylation process comprises contacting a hydrocarbon mixture comprising at least one olefin having from 2 to 6 carbon atoms and at least one isoparaffin having from 3 to 6 carbon atoms under alkylation conditions, said catalyst comprising a mixture of at least one acidic ionic liquid and at least one alkyl halide. The alkylhalide by reacting to at least a portion of the olefin with a hydrogen halide.Type: ApplicationFiled: December 13, 2006Publication date: June 19, 2008Inventors: Thomas V. Harris, Michael Driver, Saleh Elomari, Hye-Kyung C. Timken
-
Patent number: 7348293Abstract: A homogeneous, amorphous catalyst support comprising a modifying-metal-oxide and a base-metal oxide, the catalyst support having a Surface to Bulk modifying-metal/base-metal atomic ratio of from about 0.6 to about 1.3 and exhibiting an X-ray diffraction having broader line width and lower intensity than is exhibited by the base-metal oxide is disclosed. More specifically, a homogeneous, amorphous silica-modified-alumina catalyst support useful in the Fischer-Tropsch process is disclosed. A silica-modified-Alumina catalyst support of the present invention maintains the desirable properties of alumina and exhibits higher resistance to acid than unmodified alumina.Type: GrantFiled: December 5, 2003Date of Patent: March 25, 2008Assignee: Chevron U.S.A. Inc.Inventor: Hye Kyung C. Timken
-
Patent number: 7173160Abstract: Hydroprocessing such as hydrocracking is advantageously employed in processes for the recovery and purification of higher diamondoids from petroleum feedstocks. Hydrocracking and other hydroprocesses degrade nondiamondoid contaminants.Type: GrantFiled: July 16, 2003Date of Patent: February 6, 2007Assignee: Chevron U.S.A. Inc.Inventors: Theo Maesen, Robert M. Carlson, Jeremy E. Dahl, Shenggao Liu, Hye Kyung C. Timken, Waqar R. Qureshi
-
Patent number: 7148391Abstract: In a process for converting C9+ aromatic hydrocarbons to lighter aromatic products a feed comprising C9+ aromatic hydrocarbons is contacted under transalkylation reaction conditions with a catalyst composition comprising (i) a first molecular sieve selected from the group consisting of ZSM-12, mordenite and a porous crystalline inorganic oxide material having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07; and (ii) a second molecular sieve having a constraint index ranging from 3 to 12. At least the first molecular sieve has a hydrogenation component associated therewith and the first and second molecular sieves are contained in the same catalyst bed. The C9+ aromatic hydrocarbons are converted under the transalkylation reaction conditions to a reaction product containing xylene.Type: GrantFiled: November 14, 2002Date of Patent: December 12, 2006Assignee: ExxonMobil Chemical Patents Inc.Inventors: John Scott Buchanan, Ronald J. Cimini, Frank Wenyih Lai, Jose G. Santiesteban, David A. Stachelczyk, David L. Stern, Hye-Kyung C. Timken, William A. Weber, Robert A. Crane
-
Patent number: 6995112Abstract: Silica-alumina catalyst compositions and to a process for converting hydrocarbonaceous feed using the catalyst are disclosed. The present invention relates to a highly homogeneous, amorphous silica-alumina cogel material, the attributes of which make it especially useful for the Hydroprocessing of hydrocarbonaceous feeds either alone or in combination with other catalysts. This invention relates to a highly homogeneous amorphous silica-alumina catalyst having a surface to bulk silica to alumina ratio (SB ratio) of from about 0.7 to about 1.3, preferably from about 0.8 to about 1.2, more preferably from about 0.9 to about 1.1, and most preferably 1.0 and a crystalline alumina phase present in an amount no more than about 10%, preferably no more than about 5%. A catalyst of the present invention exhibits higher activity and better product selectivity in comparison with other silica-alumina catalysts.Type: GrantFiled: November 8, 2002Date of Patent: February 7, 2006Assignee: Chevron U.S.A. Inc.Inventors: Hye Kyung C. Timken, Mohammad M. Habib
-
Patent number: 6974787Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.Type: GrantFiled: December 21, 1999Date of Patent: December 13, 2005Assignees: ExxonMobil Corporation, W. R. Grace & Co.-Conn.Inventors: Arthur W. Chester, Terry G. Roberie, Hye Kyung C. Timken, Michael S. Ziebarth
-
Patent number: 6902664Abstract: A catalyst composition comprising a minor amount of a low acidity, highly dealuminated ultra stable Y zeolite having an Alpha value of less than about 5, preferable less than about 3 and Broensted acidity measured by FT-IR from about 1 to about 20, preferably from about 1-10, micro mole/g of, a homogeneous, amorphous silica-alumina cracking component having an SB ratio of from about 0.7 to about 1.3, wherein a crystalline alumina phase is present in an amount of no greater than about 10%, preferably no greater than 5% and a catalytic amount of hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal, and mixtures thereof is disclosed. The present invention provides for a process for converting hydrocarbonaceous oils comprising contacting the hydrocarbonaceous oils with the catalyst under suitable hydrocarbon conversion conditions.Type: GrantFiled: November 8, 2002Date of Patent: June 7, 2005Assignee: Chevron U.S.A. Inc.Inventor: Hye Kyung C. Timken
-
Patent number: 6872685Abstract: Improved silica-alumina catalyst compositions are methods for preparing such catalyst compositions are disclosed. The present invention relates to a method for preparing a highly homogeneous, amorphous silica-alumina cogel catalyst. Silica-alumina according to the present invention may be prepared by a variety of methods employing batch and continuous processes in different combinations. In one embodiment, a batch process, the present invention provides a method for preparing a highly homogenous silica-alumina cogel catalyst comprising: vigorously mixing an aqueous silicate solution with a gradual addition of an aqueous solution of an acid aluminum salt while maintaining the pH of the solution less than 3.Type: GrantFiled: November 8, 2002Date of Patent: March 29, 2005Assignee: Chevron U.S.A. Inc.Inventor: Hye Kyung C. Timken
-
Patent number: 6860986Abstract: A catalyst composition comprising a low acidity, highly dealuminated ultra stable Y zeolite having an Alpha value of less than about 3 and Broensted acidity measured by FT-IR from about 1 to about 20, preferably from about 1-10, micro mole/g of, an amorphous cracking component and a catalytic amount of hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal, and mixtures thereof is disclosed. The present invention provides for a process for converting hydrocarbonaceous oils comprising contacting the hydrocarbonaceous oils with the catalyst under suitable hydrocarbon conversion conditions. Such processes in include, but are not limited to, single stage hydrocracking, two-stage hydrocracking, series-flow hydrocracking, mild hydrocracking, lube hydrocracking, hydrotreating, lube hydrofinishing, hydrodesulphurization, hydrodenitrification, catalytic dewaxing and catalytic cracking.Type: GrantFiled: November 8, 2002Date of Patent: March 1, 2005Assignee: Chevron U.S.A. Inc.Inventors: Hye Kyung C. Timken, Lucy Melinda Bull, Thomas V. Harris
-
Patent number: 6747182Abstract: A process for preparing alkyl substituted aromatic compounds by alkylating an aromatic compound with an alkylating agent in the presence of a porous crystalline zeolite in which the zeolite has been selectively deluminated to remove nonframework aluminum.Type: GrantFiled: March 20, 2001Date of Patent: June 8, 2004Assignee: ExxonMobil Chemical Patents Inc.Inventors: Hye Kyung C. Timken, Arthur W. Chester, Susan Ardito, Mark P. Hagemeister
-
Publication number: 20040092383Abstract: Silica-alumina catalyst compositions and to a process for converting hydrocarbonaceous feed using the catalyst are disclosed. The present invention relates to a highly homogeneous, amorphous silica-alumina cogel material, the attributes of which make it especially useful for the Hydroprocessing of hydrocarbonaceous feeds either alone or in combination with other catalysts. This invention relates to a highly homogeneous amorphous silica-alumina catalyst having a surface to bulk silica to alumina ratio (SB ratio) of from about 0.7 to about 1.3, preferably from about 0.8 to about 1.2, more preferably from about 0.9 to about 1.1, and most preferably 1.0 and a crystalline alumina phase present in an amount no more than about 10%, preferably no more than about 5%. A catalyst of the present invention exhibits higher activity and better product selectivity in comparison with other silica-alumina catalysts.Type: ApplicationFiled: November 8, 2002Publication date: May 13, 2004Inventors: Hye Kyung C. Timken, Mohammad M. Habib
-
Publication number: 20040092385Abstract: A catalyst composition comprising a minor amount of a low acidity, highly dealuminated ultra stable Y zeolite having an Alpha value of less than about 5, preferable less than about 3 and Broensted acidity measured by FT-IR from about 1 to about 20, preferably from about 1-10, micro mole/g of, a homogeneous, amorphous silica-alumina cracking component having an SB ratio of from about 0.7 to about 1.3, wherein a crystalline alumina phase is present in an amount of no greater than about 10%, preferably no greater than 5% and a catalytic amount of hydrogenation component selected from the group consisting of a Group VI metal, a Group VIII metal, and mixtures thereof is disclosed. The present invention provides for a process for converting hydrocarbonaceous oils comprising contacting the hydrocarbonaceous oils with the catalyst under suitable hydrocarbon conversion conditions.Type: ApplicationFiled: November 8, 2002Publication date: May 13, 2004Inventor: Hye Kyung C. Timken
-
Publication number: 20040092390Abstract: Improved silica-alumina catalyst compositions are methods for preparing such catalyst compositions are disclosed. The present invention relates to a method for preparing a highly homogeneous, amorphous silica-alumina cogel catalyst. Silica-alumina according to the present invention may be prepared by a variety of methods employing batch and continuous processes in different combinations. In one embodiment, a batch process, the present invention provides a method for preparing a highly homogenous silica-alumina cogel catalyst comprising: vigorously mixing an aqueous silicate solution with a gradual addition of an aqueous solution of an acid aluminum salt while maintaining the pH of the solution less than 3.Type: ApplicationFiled: November 8, 2002Publication date: May 13, 2004Inventor: Hye Kyung C. Timken