Patents by Inventor Hyeon-gook Kim

Hyeon-gook Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240092717
    Abstract: A method of producing adipic acid using glucose as a starting material, in which adipic acid is finally obtained via an alkyl adipate intermediate from a glucaric acid potassium salt.
    Type: Application
    Filed: February 17, 2023
    Publication date: March 21, 2024
    Inventors: Chae Hwan Hong, Hyeon Gook Kim
  • Publication number: 20240075468
    Abstract: Disclosed is a method of recovering a metal catalyst during production of an adipic acid from glucose. The method of recovering and the metal catalyst may provide economic feasibility of the adipic acid production process.
    Type: Application
    Filed: March 7, 2023
    Publication date: March 7, 2024
    Inventors: Chae Hwan Hong, Hyeon Gook Kim
  • Patent number: 9670297
    Abstract: This disclosure relates to a silica support for a metallocene catalyst used for olefin polymerization, a preparation method thereof, a metallocene catalyst using the same, and olefin polymer. Specifically, according to the present invention, a silica support used for preparing a metallocene supported catalyst is treated with a specific halogenized metal compound, thereby diversifying reaction sites to a cocatalyst when preparing a metallocene catalyst, and thus, the molecular weight distribution of produced olefin polymer may be much broadened and polymer having high molecular weight may be obtained compared to the existing support, even if the same metallocene catalyst is supported.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: June 6, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Dae Sik Hong, Ki Soo Lee, Heon Yong Kwon, Hyeon-Gook Kim, Eun Kyoung Song, Yong Ho Lee
  • Publication number: 20160272739
    Abstract: This disclosure relates to a silica support for a metallocene catalyst used for olefin polymerization, a preparation method thereof, a metallocene catalyst using the same, and olefin polymer. Specifically, according to the present invention, a silica support used for preparing a metallocene supported catalyst is treated with a specific halogenized metal compound, thereby diversifying reaction sites to a cocatalyst when preparing a metallocene catalyst, and thus, the molecular weight distribution of produced olefin polymer may be much broadened and polymer having high molecular weight may be obtained compared to the existing support, even if the same metallocene catalyst is supported.
    Type: Application
    Filed: June 2, 2016
    Publication date: September 22, 2016
    Inventors: Dae Sik HONG, Ki Soo LEE, Heon Yong KWON, Hyeon-Gook KIM, Eun Kyoung SONG, Yong Ho LEE
  • Patent number: 9399690
    Abstract: This disclosure relates to a silica support for a metallocene catalyst used for olefin polymerization, a preparation method thereof, a metallocene catalyst using the same, and olefin polymer. Specifically, according to the present invention, a silica support used for preparing a metallocene supported catalyst is treated with a specific halogenized metal compound, thereby diversifying reaction sites to a cocatalyst when preparing a metallocene catalyst, and thus, the molecular weight distribution of produced olefin polymer may be much broadened and polymer having high molecular weight may be obtained compared to the existing support, even if the same metallocene catalyst is supported.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: July 26, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Dae Sik Hong, Ki Soo Lee, Heon Yong Kwon, Hyeon-Gook Kim, Eun Kyoung Song, Yong Ho Lee
  • Patent number: 9221922
    Abstract: The present invention relates to a novel metallocene compound, a catalyst composition comprising the same, and to olefinic polymers produced using the same. The metallocene compound according to the present invention and the catalyst composition comprising the same can be used when producing olefinic polymers, have outstanding copolymerization properties, and can produce olefinic polymers of high molecular weight. In particular, when the metallocene compound according to the present invention is employed, highly heat resistant block copolymers can be produced, and olefinic polymers can be produced which have a high melting point (Tm) even if the comonomer content is increased when producing the olefinic polymer.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: December 29, 2015
    Assignee: LG CHEM, LTD.
    Inventors: Yong-Ho Lee, Man-Seong Jeon, Ki-Soo Lee, Heon-Yong Kwon, Min-Seok Cho, Jong-Sang Park, Joon-Hee Cho, Hyeon-Gook Kim, Eun-Kyoung Song, Seon-Kyoung Kim, Dae-Sik Hong
  • Publication number: 20150240010
    Abstract: This disclosure relates to a silica support for a metallocene catalyst used for olefin polymerization, a preparation method thereof, a metallocene catalyst using the same, and olefin polymer. Specifically, according to the present invention, a silica support used for preparing a metallocene supported catalyst is treated with a specific halogenized metal compound, thereby diversifying reaction sites to a cocatalyst when preparing a metallocene catalyst, and thus, the molecular weight distribution of produced olefin polymer may be much broadened and polymer having high molecular weight may be obtained compared to the existing support, even if the same metallocene catalyst is supported.
    Type: Application
    Filed: February 5, 2014
    Publication date: August 27, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Dae Sik Hong, Ki Soo Lee, Heon Yong Kwon, Hyeon-Gook Kim, Eun Kyoung Song, Yong Ho Lee
  • Patent number: 9012347
    Abstract: The present invention relates to a preparation method of a metallocene catalyst. More particularly, the present invention relates to a preparation method of a supported hybrid metallocene catalyst, including the steps of treating a support having a water content of 4 to 7% by weight with trialkyl aluminum at a predetermined temperature; supporting alkyl aluminoxane on the support; and supporting a metallocene compound on the alkyl aluminoxane-supported support. According to the present invention, it is possible to prepare a supported hybrid metallocene catalyst which shows a high activity in the polymerization of olefins and enables the preparation of polyolefins having a high bulk density, by a simple process.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: April 21, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Hyeon-Gook Kim, Ki-Soo Lee, Dae-Sik Hong, Eun-Kyoung Song, Man-Seong Jeon
  • Patent number: 8716415
    Abstract: The present invention provides a method for preparing a supported metallocene catalyst, a supported metallocene catalyst prepared by the method, and a method for preparing a polyolefin using the supported metallocene catalyst. The supported metallocene catalyst according to the present invention contains catalyst components uniformly distributed deep into the whole porous carrier particles to secure a high catalytic activity and facilitates polymerization of polyolefins with high bulk density.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: May 6, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hyeon-Gook Kim, Ki-Soo Lee, Eun-Kyoung Song, Yong-Ho Lee, Dae-Sik Hong
  • Patent number: 8692009
    Abstract: The present invention relates to a novel metallocene compound, a catalyst composition comprising the same, and to olefinic polymers produced using the same. The metallocene compound according to the present invention and the catalyst composition comprising the same can be used when producing olefinic polymers, have outstanding copolymerization properties, and can produce olefinic polymers of high molecular weight. In particular, when the metallocene compound according to the present invention is employed, highly heat resistant block copolymers can be produced, and olefinic polymers can be produced which have a high melting point (Tm) even if the comonomer content is increased when producing the olefinic polymer.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: April 8, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Yong Ho Lee, Manseong Jeon, Ki-Soo Lee, Heon-Yong Kwon, Min-Seok Cho, Jong-Sang Park, Joon Hee Cho, Hyeon-Gook Kim, Eunkyoung Song, Seon-Kyoung Kim, Dae-Sik Hong
  • Publication number: 20140066288
    Abstract: The present invention relates to a novel metallocene compound, a catalyst composition comprising the same, and to olefinic polymers produced using the same. The metallocene compound according to the present invention and the catalyst composition comprising the same can be used when producing olefinic polymers, have outstanding copolymerisation properties, and can produce olefinic polymers of high molecular weight. In particular, when the metallocene compound according to the present invention is employed, highly heat resistant block copolymers can be produced, and olefinic polymers can be produced which have a high melting point (Tm) even if the comonomer content is increased when producing the olefinic polymer.
    Type: Application
    Filed: November 12, 2013
    Publication date: March 6, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Yong-Ho Lee, Man-Seong Jeon, Ki-Soo Lee, Heon-Yong Kwon, Min-Seok Cho, Jong-Sang Park, Joon-Hee Cho, Hyeon-Gook Kim, Eun-Kyoung Song, Seon-Kyoung Kim, Dae-Sik Hong
  • Publication number: 20130253154
    Abstract: The present invention relates to a preparation method of a metallocene catalyst. More particularly, the present invention relates to a preparation method of a supported hybrid metallocene catalyst, including the steps of treating a support having a water content of 4 to 7% by weight with trialkyl aluminum at a predetermined temperature; supporting alkyl aluminoxane on the support; and supporting a metallocene compound on the alkyl aluminoxane-supported support. According to the present invention, it is possible to prepare a supported hybrid metallocene catalyst which shows a high activity in the polymerization of olefins and enables the preparation of polyolefins having a high bulk density, by a simple process.
    Type: Application
    Filed: September 28, 2011
    Publication date: September 26, 2013
    Applicant: LG CHEM ,LTD.
    Inventors: Hyeon-Gook Kim, Ki-Soo Lee, Dae-Sik Hong, Eun-Kyoung Song, Man-Seong Jeon
  • Publication number: 20120252991
    Abstract: The present invention provides a method for preparing a supported metallocene catalyst, a supported metallocene catalyst prepared by the method, and a method for preparing a polyolefin using the supported metallocene catalyst. The supported metallocene catalyst according to the present invention contains catalyst components uniformly distributed deep into the whole porous carrier particles to secure a high catalytic activity and facilitates polymerization of polyolefins with high bulk density.
    Type: Application
    Filed: October 19, 2010
    Publication date: October 4, 2012
    Inventors: Hyeon-Gook Kim, Ki-Soo Lee, Eun-Kyoung Song, Yong-Ho Lee, Dae-Sik Hong
  • Patent number: 8263693
    Abstract: The present invention provides a flame retardant resin composition comprising (A) 100 weight part of a basic resin comprising acrylonitrile-butadiene-styrene copolymer resin and styrene-acrylonitrile copolymer resin; and (B) 10-30 weight part of a bromine-based organic compound flame retardant, and selectively comprising (C) 1-20 weight part of an antimony-based auxiliary flame retardant and (D) 1-10 weight part of one or more compounds selected from the group consisting of metalstearate and stearamide compounds, wherein the bromine-based organic compound flame retardant (B) is octabromodiphenyl ethane. The flame retardant resin composition of the present invention has excellent flame retardancy, impact strength and melt flow index.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: September 11, 2012
    Assignee: LG Chem, Ltd.
    Inventors: You-seok Seo, Ki-young Nam, Yong-yeon Hwang, Je-sun Yoo, Hyeon-gook Kim, Myeong-soo Song
  • Publication number: 20120123078
    Abstract: The present invention relates to a novel metallocene compound, a catalyst composition comprising the same, and to olefinic polymers produced using the same. The metallocene compound according to the present invention and the catalyst composition comprising the same can be used when producing olefinic polymers, have outstanding copolymerisation properties, and can produce olefinic polymers of high molecular weight. In particular, when the metallocene compound according to the present invention is employed, highly heat resistant block copolymers can be produced, and olefinic polymers can be produced which have a high melting point (Tm) even if the comonomer content is increased when producing the olefinic polymer.
    Type: Application
    Filed: July 29, 2010
    Publication date: May 17, 2012
    Inventors: Yong Ho Lee, Manseong Jeon, Ki-Soo Lee, Heon-Yong Kwon, Min-Seok Cho, Jong-Sang Park, Joon-Hee Cho, Hyeon-Gook Kim, EunKyoung Song, Seon-Kyoung Kim, Dae-Sik Hong
  • Patent number: 8133942
    Abstract: Provided is a thermoplastic resin composition having excellent flame resistance, colorability, and scratch resistance, including: A) 100 parts by weight of a basic resin comprising 10 to 89 wt % of acrylonitrile-butadiene-styrene copolymer, 89 to 10 wt % of styrene-acrylonitrile copolymer, and 1 to 40 wt % of methylmethacrylate polymer; B) 1 to 30 parts by weight of bromoalkyl or bromophenyl cyanurate compounds; and C) 1 to 20 parts by weight of antimony compound, thereby, making it possible to provide the thermoplastic resin composition having excellent flame resistance, impact strength, scratch resistance, colorability, and surface hardness as synergy effects.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: March 13, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Je-sun Yoo, Ki-young Nam, Yong-yeon Hwang, You-seok Seo, Hyeon-gook Kim, Myeong-soo Song
  • Publication number: 20100210773
    Abstract: The present invention provides a flame retardant resin composition comprising (A) 100 weight part of a basic resin comprising acrylonitrile-butadiene-styrene copolymer resin and styrene-acrylonitrile copolymer resin; and (B) 10-30 weight part of a bromine-based organic compound flame retardant, and selectively comprising (C) 1-20 weight part of an antimony-based auxiliary flame retardant and (D) 1-10 weight part of one or more compounds selected from the group consisting of metalstearate and stearamide compounds, wherein the bromine-based organic compound flame retardant (B) is octabromodiphenyl ethane. The flame retardant resin composition of the present invention has excellent flame retardancy, impact strength and melt flow index.
    Type: Application
    Filed: August 29, 2008
    Publication date: August 19, 2010
    Inventors: You-seok Seo, Xi-young Nam, Yong-Yeon Hwang, Je-sun Yoo, Hyeon-gook Kim, Myeong-soo Song
  • Publication number: 20100069540
    Abstract: Provided is a thermoplastic resin composition having excellent flame resistance, colorability, and scratch resistance, including: A) 100 parts by weight of a basic resin comprising 10 to 89 wt % of acrylonitrile-butadiene-styrene copolymer, 89 to 10 wt % of styrene-acrylonitrile copolymer, and 1 to 40 wt % of methylmethacrylate polymer; B) 1 to 30 parts by weight of bromoalkyl or bromophenyl cyanurate compounds; and C) 1 to 20 parts by weight of antimony compound, thereby, making it possible to provide the thermoplastic resin composition having excellent flame resistance, impact strength, scratch resistance, colorability, and surface hardness as synergy effects.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 18, 2010
    Applicant: LG Chem, Ltd.
    Inventors: Je-sun Yoo, Ki-young Nam, Yong-yeon Hwang, You-seok Seo, Hyeon-gook Kim, Myeong-soo Song