Patents by Inventor Hyeong Jae Lee

Hyeong Jae Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120295033
    Abstract: Disclosed are a plasma nano-powder synthesizing and coating device and method, the device comprising: a chamber which forms a sealed space, and comprises a reaction unit provided at one side and a processing unit provided at the other side, the reaction unit provided in an upstream of gas flowing in the chamber, having a high-temperature plasma region formed by a plasma torch generating plasma with an applied electric current, and comprising a mixed gas feeder to supply mixed gas to the reaction unit and a powder feeder to supply powder to the reaction unit, and the processing unit provided in a downstream of plasma flame in the chamber, and comprising a supporter to support a material; and a vacuum forming unit which forms a vacuum inside the chamber, the powder being supplied to the reaction unit and reacting in the plasma region of the reaction unit, and the reacted powder being synthesized in the reaction unit, the processing unit and a surface of the supporter, and coated on a surface of the material of
    Type: Application
    Filed: August 29, 2011
    Publication date: November 22, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Jong-Huy Kim, Hyeong-Jae Lee, Yong-Il Kim
  • Publication number: 20100133461
    Abstract: Piezoelectric compounds of the formula xNamBinTiO3-yKmBinTiO3-zLimBinTiO3-pBaTiO3 where (0<x?1), (0?y?1), (0?z?1), (0.3?m?0.7), (0.3?n?0.7), (0<p?1) (0.9?m/n?1.1) as well as to doped variations thereof are disclosed. The material is suitable for high power applications.
    Type: Application
    Filed: September 24, 2009
    Publication date: June 3, 2010
    Applicant: The Penn State Research Foundation
    Inventors: Shujun Zhang, Hyeong Jae Lee, Thomas R. Shrout