Patents by Inventor Hyo-ji CHOI

Hyo-ji CHOI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240074258
    Abstract: An electronic device includes a display device, which may be fabricated using a described method. The display device includes a glass substrate including a first surface, a second surface opposite the first surface, and a side surface between the first surface and the second surface, an outermost structure on the first surface of the glass substrate and located adjacent to an edge of one side of the glass substrate, and a display area including a plurality of light emitting areas on the first surface of the glass substrate and located farther from the edge of the one side of the glass substrate than the outermost structure is. A minimum distance from the side surface of the glass substrate to the outermost structure is equal to 130 ?m or less.
    Type: Application
    Filed: May 5, 2023
    Publication date: February 29, 2024
    Inventors: Wan Jung KIM, Dong Jo KIM, Sun Hwa KIM, Young Ji KIM, Chang Sik KIM, Kyung Ah NAM, Hyo Young MUN, Yong Seung PARK, Yi Seul UM, Dae Sang YUN, Kwan Hee LEE, So Young LEE, Young Hoon LEE, Young Seo CHOI, Sun Young KIM, Ji Won SOHN, Do Young LEE, Seung Hoon LEE
  • Patent number: 9543391
    Abstract: According to example embodiments a transistor includes a channel layer on a substrate, a first channel supply layer on the channel, a depletion layer, a second channel supply layer, source and drain electrodes on the first channel supply layer, and a gate electrode on the depletion layer. The channel includes a 2DEG channel configured to generate a two-dimensional electron gas and a depletion area. The first channel supply layer corresponds to the 2DEG channel and defines an opening that exposes the depletion area. The depletion layer is on the depletion area of the channel layer. The second channel supply layer is between the depletion layer and the depletion area.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: January 10, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-jun Hwang, Jae-joon Oh, Jae-won Lee, Hyo-ji Choi
  • Patent number: 9209250
    Abstract: Provided are high electron mobility transistors (HEMTs), methods of manufacturing the HEMTs, and electronic devices including the HEMTs. An HEMT may include an impurity containing layer, a partial region of which is selectively activated. The activated region of the impurity containing layer may be used as a depletion forming element. Non-activated regions may be disposed at opposite side of the activated region in the impurity containing layer. A hydrogen content of the activated region may be lower than the hydrogen content of the non-activated region. In another example embodiment, an HEMT may include a depletion forming element that includes a plurality of regions, and properties (e.g., doping concentrations) of the plurality of regions may be changed in a horizontal direction.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: December 8, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-hwan Park, Jai-kwang Shin, Ki-yeol Park, Jae-joon Oh, Woo-chul Jeon, Hyo-ji Choi
  • Patent number: 9202878
    Abstract: A gallium nitride based semiconductor device includes a silicon-based layer doped simultaneously with boron (B) and germanium (Ge) at a relatively high concentration, a buffer layer on the silicon-based layer, and a nitride stack on the buffer layer. A doping concentration of boron (B) and germanium (Ge) may be higher than 1×1019/cm3.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: December 1, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-jo Tak, Jae-kyun Kim, Jun-youn Kim, Jae-won Lee, Hyo-ji Choi
  • Patent number: 9136430
    Abstract: A method of manufacturing a semiconductor device includes forming a silicon substrate, forming a buffer layer on the silicon substrate, and forming a nitride semiconductor layer on the buffer layer. The buffer layer includes a first layer, a second layer, and a third layer. The first layer includes AlxInyGa1-x-yN (0?x?1, 0?y?1, 0?x+y?1) and has a lattice constant LP1 that is smaller than a lattice constant LP0 of the silicon substrate. The second layer is formed on the first layer, includes AlxInyGa1-x-yN (0?x<1, 0?y<1, 0?x+y<1), and has a lattice constant LP2 that is greater than LP1 and smaller than LP0. The third layer is formed on the second layer, includes AlxInyGa1-x-yN (0?x<1, 0?y<1, 0?x+y<1), and has a lattice constant LP3 that is smaller than LP2.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: September 15, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-jo Tak, Jae-kyun Kim, Joo-sung Kim, Jun-youn Kim, Jae-won Lee, Hyo-ji Choi
  • Patent number: 9076850
    Abstract: According to example embodiments, a high electron mobility transistor includes: a channel layer including a 2-dimensional electron gas (2DEG); a contact layer on the channel layer; a channel supply layer on the contact layer; a gate electrode on a portion of the channel layer; and source and drain electrodes on at least one of the channel layer, the contact layer, and the channel supply layer. The contact layer is configured to form an ohmic contact on the channel layer. The contact layer is n-type doped and contains a Group III-V compound semiconductor. The source electrode and the drain electrode are spaced apart from opposite sides of the gate electrode.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: July 7, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: In-jun Hwang, Hyo-ji Choi, Jong-seob Kim, Jae-joon Oh
  • Publication number: 20150048421
    Abstract: Provided are high electron mobility transistors (HEMTs), methods of manufacturing the HEMTs, and electronic devices including the HEMTs. An HEMT may include an impurity containing layer, a partial region of which is selectively activated. The activated region of the impurity containing layer may be used as a depletion forming element. Non-activated regions may be disposed at opposite side of the activated region in the impurity containing layer. A hydrogen content of the activated region may be lower than the hydrogen content of the non-activated region. In another example embodiment, an HEMT may include a depletion forming element that includes a plurality of regions, and properties (e.g., doping concentrations) of the plurality of regions may be changed in a horizontal direction.
    Type: Application
    Filed: May 20, 2014
    Publication date: February 19, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-hwan PARK, Jai-kwang SHIN, Ki-yeol PARK, Jae-joon OH, Woo-chul JEON, Hyo-ji CHOI
  • Patent number: 8946773
    Abstract: A semiconductor buffer structure may include a silicon substrate and a buffer layer that is formed on the silicon substrate. The buffer layer may include a first layer, a second layer formed on the first layer, and a third layer formed on the second layer. The first layer may include AlxInyGa1-x-yN (0?x?1, 0?y?1, 0?x+y?1) and have a lattice constant LP1 that is smaller than a lattice constant LP0 of the silicon substrate. The second layer may include AlxInyGa1-x-yN (0?x<1, 0?y<1, 0?x+y<1) and have a lattice constant LP2 that is greater than the lattice constant LP1 and smaller than the lattice constant LP0. The third layer may include AlxInyGa1-x-yN (0?x<1, 0?y<1, 0?x+y<1) and have a lattice constant LP3 that is greater than the lattice constant LP1 and smaller than the lattice constant LP2.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-jo Tak, Jae-kyun Kim, Joo-sung Kim, Jun-youn Kim, Jae-won Lee, Hyo-ji Choi
  • Patent number: 8785944
    Abstract: A high electron mobility transistor (HEMT) according to example embodiments includes a first semiconductor layer, a second semiconductor layer on the first semiconductor layer, and a reverse diode gate structure on the second semiconductor layer. A source and a drain may be on at least one of the first semiconductor layer and the second semiconductor layer. A gate electrode may be on the reverse diode gate structure.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: July 22, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-jun Hwang, Jae-joon Oh, Jae-won Lee, Hyo-ji Choi, Jong-bong Ha
  • Patent number: 8741706
    Abstract: A high electron mobility transistor (HEMT) includes a substrate, an HEMT stack spaced apart from the substrate, and a pseudo-insulation layer (PIL) disposed between the substrate and the HEMT stack. The PIL layer includes at least two materials having different phases. The PIL layer defines an empty space that is wider at an intermediate portion than at an entrance of the empty space.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: June 3, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-youn Kim, Jae-won Lee, Hyo-ji Choi
  • Publication number: 20140045284
    Abstract: A method of manufacturing a semiconductor device includes forming a silicon substrate, forming a buffer layer on the silicon substrate, and forming a nitride semiconductor layer on the buffer layer. The buffer layer includes a first layer, a second layer, and a third layer. The first layer includes AlxInyGa1-x-yN (0?x?1, 0?y?1, 0?x+y?1) and has a lattice constant LP1 that is smaller than a lattice constant LP0 of the silicon substrate. The second layer is formed on the first layer, includes AlxInyGa1-x-yN (0?x<1, 0?y<1, 0?x+y<1), and has a lattice constant LP2 that is greater than LP1 and smaller than LP0. The third layer is formed on the second layer, includes AlxInyGa1-x-yN (0?x<1, 0?y<1, 0?x+y<1), and has a lattice constant LP3 that is smaller than LP2.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 13, 2014
    Inventors: Young-jo TAK, Jae-kyun KIM, Joo-sung KIM, Jun-youn KIM, Jae-won LEE, Hyo-ji CHOI
  • Publication number: 20140042492
    Abstract: A semiconductor buffer structure may include a silicon substrate and a buffer layer that is formed on the silicon substrate. The buffer layer may include a first layer, a second layer formed on the first layer, and a third layer formed on the second layer. The first layer may include AlxInyGa1-x-yN (0?x?1, 0?y?1, 0?x+y?1) and have a lattice constant LP1 that is smaller than a lattice constant LP0 of the silicon substrate. The second layer may include AlxInyGa1-x-yN (0?x<1, 0?y<1, 0?x+y<1) and have a lattice constant LP2 that is greater than the lattice constant LP1 and smaller than the lattice constant LP0. The third layer may include AlxInyGa1-x-yN (0?x<1, 0?y<1, 0?x+y<1) and have a lattice constant LP3 that is greater than the lattice constant LP1 and smaller than the lattice constant LP2.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 13, 2014
    Inventors: Young-jo TAK, Jae-kyun KIM, Joo-sung KIM, Jun-youn KIM, Jae-won LEE, Hyo-ji CHOI
  • Publication number: 20140027779
    Abstract: According to example embodiments, a high electron mobility transistor includes: a channel layer including a 2-dimensional electron gas (2DEG); a contact layer on the channel layer; a channel supply layer on the contact layer; a gate electrode on a portion of the channel layer; and source and drain electrodes on at least one of the channel layer, the contact layer, and the channel supply layer. The contact layer is configured to form an ohmic contact on the channel layer. The contact layer is n-type doped and contains a Group III-V compound semiconductor. The source electrode and the drain electrode are spaced apart from opposite sides of the gate electrode.
    Type: Application
    Filed: July 29, 2013
    Publication date: January 30, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: In-jun HWANG, Hyo-ji CHOI, Jong-seob KIM, Jae-joon OH
  • Publication number: 20140001438
    Abstract: A semiconductor device includes a buffer structure on a silicon substrate, and at least one gallium nitride-based semiconductor layer on the buffer structure. The buffer structure includes a plurality of nitride semiconductor layers and a plurality of stress control layers that are alternately disposed with the plurality of nitride semiconductor layer. The plurality of stress control layers include a IV-IV group semiconductor material.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 2, 2014
    Inventors: Joo-sung KIM, Jun-youn KIM, Jae-won LEE, Hyo-ji CHOI, Young-jo TAK
  • Publication number: 20130328054
    Abstract: A gallium nitride based semiconductor device includes a silicon-based layer doped simultaneously with boron (B) and germanium (Ge) at a relatively high concentration, a buffer layer on the silicon-based layer, and a nitride stack on the buffer layer. A doping concentration of boron (B) and germanium (Ge) may be higher than 1×1019/cm3.
    Type: Application
    Filed: December 13, 2012
    Publication date: December 12, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-jo TAK, Jae-kyun KIM, Jun-youn KIM, Jae-won LEE, Hyo-ji CHOI
  • Publication number: 20130302953
    Abstract: A high electron mobility transistor (HEMT) includes a substrate, an HEMT stack spaced apart from the substrate, and a pseudo-insulation layer (PIL) disposed between the substrate and the HEMT stack. The PIL layer includes at least two materials having different phases. The PIL layer defines an empty space that is wider at an intermediate portion than at an entrance of the empty space.
    Type: Application
    Filed: July 17, 2013
    Publication date: November 14, 2013
    Inventors: Jun-youn KIM, Jae-won LEE, Hyo-ji CHOI
  • Patent number: 8536623
    Abstract: A high electron mobility transistor (HEMT) includes a substrate, an HEMT stack spaced apart from the substrate, and a pseudo-insulation layer (PIL) disposed between the substrate and the HEMT stack. The PIL layer includes at least two materials having different phases. The PIL layer defines an empty space that is wider at an intermediate portion than at an entrance of the empty space.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: September 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-youn Kim, Jae-won Lee, Hyo-ji Choi
  • Publication number: 20130099285
    Abstract: According to example embodiments a transistor includes a channel layer on a substrate, a first channel supply layer on the channel, a depletion layer, a second channel supply layer, source and drain electrodes on the first channel supply layer, and a gate electrode on the depletion layer. The channel includes a 2DEG channel configured to generate a two-dimensional electron gas and a depletion area. The first channel supply layer corresponds to the 2DEG channel and defines an opening that exposes the depletion area. The depletion layer is on the depletion area of the channel layer. The second channel supply layer is between the depletion layer and the depletion area.
    Type: Application
    Filed: June 14, 2012
    Publication date: April 25, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: In-jun Hwang, Jae-joon Oh, Jae-won Lee, Hyo-ji Choi
  • Publication number: 20130082240
    Abstract: A high electron mobility transistor (HEMT) includes a substrate, an HEMT stack spaced apart from the substrate, and a pseudo-insulation layer (PIL) disposed between the substrate and the HEMT stack. The PIL layer includes at least two materials having different phases. The PIL layer defines an empty space that is wider at an intermediate portion than at an entrance of the empty space.
    Type: Application
    Filed: August 10, 2012
    Publication date: April 4, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jun-youn KIM, Jae-won LEE, Hyo-ji CHOI
  • Publication number: 20130069074
    Abstract: According to an example embodiment, a power device includes a substrate, a nitride-containing stack on the substrate, and an electric field dispersion unit. Source, drain, and gate electrodes are on the nitride-containing stack. The nitride-containing stack includes a first region that is configured to generate a larger electric field than that of a second region of the nitride-containing stack. The electric field dispersion unit may be between the substrate and the first region of the nitride-containing stack.
    Type: Application
    Filed: September 11, 2012
    Publication date: March 21, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-won LEE, Su-hee CHAE, Jun-youn KIM, In-jun HWANG, Hyo-ji CHOI