Patents by Inventor Hyong Y. Lee

Hyong Y. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8758552
    Abstract: Disclosed are systems, devices and methodologies for debonding wafers from carrier plates. In certain wafer processing operations, it is desirable to temporarily mount a wafer on a carrier plate for support and ease of handling. Such a mounting can be achieved by bonding the wafer and the carrier plate with an adhesive. Once such operations are completed, the wafer needs to be debonded from the carrier plate. Such a debonding process can be achieved by applying a suction force to the wafer-carrier plate assembly. Various debonding systems, devices and methodologies, and related features, are disclosed.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: June 24, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventors: Steve Canale, David J. Zapp, Daniel E. Sanchez, Hung V. Phan, Hyong Y. Lee
  • Publication number: 20110297329
    Abstract: Disclosed are systems, devices and methodologies for debonding wafers from carrier plates. In certain wafer processing operations, it is desirable to temporarily mount a wafer on a carrier plate for support and ease of handling. Such a mounting can be achieved by bonding the wafer and the carrier plate with an adhesive. Once such operations are completed, the wafer needs to be debonded from the carrier plate. Such a debonding process can be achieved by applying a suction force to the wafer-carrier plate assembly. Various debonding systems, devices and methodologies, and related features, are disclosed.
    Type: Application
    Filed: October 5, 2010
    Publication date: December 8, 2011
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventors: Steve Canale, David J. Zapp, Daniel E. Sanchez, Hung V. Phan, Hyong Y. Lee
  • Patent number: 5594262
    Abstract: The incorporation of an aluminum arsenide (AlAs) buffer layer in a gallium arsenide (GaAs) field effect transistor (FET) structure is found to improve the overall device performance, particularly in the high temperature operating regime. Similar characteristics may be obtained from devices fabricated with an Al.sub.x Ga.sub.1-x As 0.2.ltoreq.x.ltoreq.1 barrier layer. At temperatures greater than 250.degree. C., the semi-insulating gallium arsenide substrate begins to conduct significant amounts of current. The highly resistive AlAs buffer layer limits this increased conduction, thus permitting device operation at temperatures where parasitic leakage currents would impede or prevent device operation. Devices fabricated with AlAs buffer layers exhibited lower drain parasitic leakage currents and showed improved output conductance characteristics at 350.degree. C. ambient temperature.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: January 14, 1997
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Hyong Y. Lee, Belinda Johnson, Rocky Reston, Chris Ito, Gerald Trombley, Charles Havasy
  • Patent number: 5411902
    Abstract: The incorporation of an aluminum arsenide (AlAs) buffer layer in a gallium arsenide (GaAs) field effect transistor (FET) structure is found to improve the overall device performance, particularly in the high temperature operating regime. Similar characteristics may be obtained from devices fabricated with an Al.sub.x Ga.sub.1-x As (0.2.ltoreq.x.ltoreq.1) barrier layer. At temperatures greater than 250.degree. C., the semi-insulating gallium arsenide substrate begins to conduct significant amounts of current. The highly resistive AlAs buffer layer limits this increased conduction, thus permitting device operation at temperatures where parasitic leakage currents would impede or prevent device operation. Devices fabricated with AlAs buffer layers exhibited lower drain parasitic leakage currents and showed improved output conductance characteristics at 350.degree. C. ambient temperature.
    Type: Grant
    Filed: June 6, 1994
    Date of Patent: May 2, 1995
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Hyong Y. Lee, Belinda Johnson, Rocky Reston, Chris Ito, Gerald Trombley, Charles Havasy