Patents by Inventor Hyosig Kang

Hyosig Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10292887
    Abstract: A motorized joint positioner includes a first holder configured for a first portion of a patient's anatomy to rest thereon, and a second holder configured for a second portion of the patient's anatomy to rest thereon. The joint positioner further includes a first robotic arm coupled to the first holder, and a second robotic arm coupled to the second holder. At least one of the first and second robotic arms comprises at least two joints providing movement of the corresponding first or second holder in at least two degrees of freedom. At least one of the first and second robotic arms includes an actuator controllable to position the corresponding first or second holder.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: May 21, 2019
    Assignee: MAKO Surgical Corp.
    Inventor: Hyosig Kang
  • Publication number: 20190090966
    Abstract: A robotic system and methods for performing spine surgery are disclosed. The system comprises a robotic manipulator with a tool to hold a screw and to rotate the screw about a rotational axis. The screw is self-tapping and has a known thread geometry that is stored by a controller. A navigation system tracks a position of a target site. Movement of the robotic manipulator is controlled to maintain the rotational axis of the surgical tool along a planned trajectory with respect to the target site based on the tracked position of the target site. In autonomous or manual modes of operation, the rotational rate of the screw about the rotational axis and/or an advancement rate of the screw linearly along the planned trajectory is controlled to be proportional to the known thread geometry stored in the memory.
    Type: Application
    Filed: November 8, 2018
    Publication date: March 28, 2019
    Applicant: MAKO Surgical Corp.
    Inventors: Hyosig Kang, Jienan Ding, David Gene Bowling, Christopher Wayne Jones, Greg McEwan, Lucas Gsellman
  • Patent number: 10231790
    Abstract: A method for joint replacement is provided. A representation of a first bone is created, and a representation of a second bone is created. Bone preparation for implanting a first implant on the first bone is planned. The first bone to receive the first implant is prepared by manipulating a surgical tool to sculpt the first bone. Bone preparation for implanting a second implant on the second bone after preparing the first bone is planned. The second bone to receive the second implant is prepared by manipulating the surgical tool to sculpt the second bone.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: March 19, 2019
    Assignee: MAKO Surgical Corp.
    Inventors: Arthur Quaid, Hyosig Kang, Dennis Moses, Rony Abovitz, Maurice Ferre, Binyamin Hajaj, Martin Roche, Scott Illsley, Louis Arata, Dana Mears, Timothy Blackwell, Alon Mozes, Sherif Aly, Amardeep Singh Dugal, Randal Hand, Sandi Glauser, Juan Salcedo, Peter Ebbitt, William Tapia
  • Patent number: 10206750
    Abstract: A surgical system for positioning a prosthetic component includes a robotic arm and a surgical tool having an end effector configured to be coupled to the robotic arm. The system further includes a controller programmed to generate control signals, based on a planned pose of the prosthetic component, that cause the robotic arm to allow movement of the surgical tool in at least one degree of freedom and to constrain movement of the surgical tool in other degrees of freedom, wherein the controller is programmed to generate control signals that cause the robotic arm to maintain the constraint as the prosthetic component is implanted on the anatomy.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: February 19, 2019
    Assignee: MAKO Surgical Corp.
    Inventors: Benny Hagag, Hyosig Kang, Alon Mozes, Daniel Odermatt, Brian D. Schmitz
  • Publication number: 20190015164
    Abstract: A method of compensating for motion of objects during a surgical procedure is provided. The method includes determining a pose of an anatomy of a patient; determining a pose of a surgical tool of a surgical device; defining a relationship between the pose of the anatomy and a position, an orientation, a velocity, and/or an acceleration of the surgical tool; associating the pose of the anatomy, the pose of the surgical tool, and the relationship; and updating the association in response to a motion of the anatomy and/or a motion of the surgical tool without interrupting operation of the surgical device during the surgical procedure.
    Type: Application
    Filed: July 23, 2018
    Publication date: January 17, 2019
    Applicant: MAKO Surgical Corp.
    Inventors: Arthur Quaid, Hyosig Kang, Dennis Moses
  • Publication number: 20190000553
    Abstract: A surgical system includes a robotic device, and a surgical tool coupled to the robotic device and comprising a distal end. The system further includes a neural monitor configured to generate an electrical signal and apply the electrical signal to the distal end of the surgical tool, wherein the electrical signal causes innervation of a first portion of a patient's anatomy which generates an electromyographic signal, and a sensor configured to measure the electromyographic signal. The neural monitor is configured to determine a distance between the distal end of the surgical tool and a portion of nervous tissue based on the electrical signal and the electromyographic signal, and cause feedback to be provided to a user based on the distance.
    Type: Application
    Filed: August 27, 2018
    Publication date: January 3, 2019
    Applicant: MAKO Surgical Corp.
    Inventors: Chris Alan Lightcap, Hyosig Kang, Arthur E. Quaid, III, Rony Abovitz
  • Publication number: 20180325608
    Abstract: A robotic system for performing spine surgery. The robotic system comprises a robotic manipulator and a navigation system to track a surgical tool relative to a patient's spine. The robotic system may be controlled manually and/or autonomously to place implants in the patient's spine.
    Type: Application
    Filed: May 10, 2018
    Publication date: November 15, 2018
    Applicant: MAKO Surgical Corp.
    Inventors: Hyosig Kang, Jienan Ding, Snehal Kasodekar, Peter L. Ebbitt, Xiao H. Gao, Bojan Gospavic, Charles L. Bush, JR.
  • Publication number: 20180318021
    Abstract: A robotic surgery system including an imaging system having a source element and a detector element, and a coupling member coupling the source element to the detector element. The system further includes an instrument support structure extending from the coupling member, and a surgical instrument coupled to the moveable support structure.
    Type: Application
    Filed: July 2, 2018
    Publication date: November 8, 2018
    Applicant: MAKO Surgical Corp.
    Inventor: Hyosig Kang
  • Patent number: 10058392
    Abstract: A computer-assisted surgery system may have a robotic arm including a surgical tool and a processor communicatively connected to the robotic aim. The processor may be configured to receive, from a neural monitor, a signal indicative of a distance between the surgical tool and a portion of a patient's anatomy including nervous tissue. The processor may be further configured to generate a command for altering a degree to which the robotic aim resists movement based on the signal received from the neural monitor; and send the command to the robotic arm.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: August 28, 2018
    Assignee: MAKO Surgical Corp.
    Inventors: Chris Alan Lightcap, Hyosig Kang, Arthur E. Quaid, III, Rony Abovitz
  • Publication number: 20180235718
    Abstract: A robotic surgery method for cutting a bone of a patient includes characterizing the geometry and positioning of the bone and manually moving a handheld manipulator, the handheld manipulator operatively coupled to a bone cutting tool having an end effector portion, to cut a portion of the bone with the end effector portion. The handheld manipulator further comprises a manipulator housing and an actuator assembly movably coupled between the manipulator housing and the bone cutting tool. The method further includes causing the actuator assembly to automatically move relative to the manipulator housing to maintain the end effector portion of the tool within a desired bone cutting envelope in response to movement of the manipulator housing relative to the bone.
    Type: Application
    Filed: April 20, 2018
    Publication date: August 23, 2018
    Applicant: MAKO Surgical Corp.
    Inventors: Hyosig Kang, Scott Nortman
  • Patent number: 10028788
    Abstract: A robotic surgery system having a mobile base and a first moveable support structure coupled between the mobile base and a first element of a fluoroscopic imaging system. The first element is a source element or a detector element, and a second element of the imaging system is a source element or a detector element. The second element is configured to be repositionable relative to patient tissue disposed between the first and second elements. The system further includes a coupling member configured to fixedly couple the first element to the second element, and a surgical instrument for conducting a procedure on the patient tissue. The system further includes a second moveable support structure coupled between the coupling member and the surgical instrument. The second moveable support structure includes one or more actuators which may be controlled to electromechanically characterize movement of the surgical instrument relative to the coupling member.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: July 24, 2018
    Assignee: MAKO Surgical Corp.
    Inventor: Hyosig Kang
  • Patent number: 10028789
    Abstract: A method of compensating for motion of objects during a surgical procedure is provided. The method includes determining a pose of an anatomy of a patient; determining a pose of a surgical tool of a surgical device; defining a relationship between the pose of the anatomy and a position, an orientation, a velocity, and/or an acceleration of the surgical tool; associating the pose of the anatomy, the pose of the surgical tool, and the relationship; and updating the association in response to a motion of the anatomy and/or a motion of the surgical tool without interrupting operation of the surgical device during the surgical procedure.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: July 24, 2018
    Assignee: MAKO Surgical Corp.
    Inventors: Arthur Quaid, Hyosig Kang, Dennis Moses
  • Patent number: 10004565
    Abstract: A method for customizing an interactive control boundary includes positioning a virtual implant model relative to a virtual bone model based on a user input, and extracting reference feature information associated with the virtual implant model, wherein the reference feature information describes one of a point, a line, a plane, and a surface associated with the virtual implant model. The method further includes mapping the extracted reference feature information to the virtual model of the bone, and receiving information indicative of a positional landmark associated with the bone, then estimating an intersection between the positional landmark and the mapped reference feature and generating a virtual boundary based, at least in part, on the estimated intersection between the positional landmark and the mapped reference feature.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: June 26, 2018
    Assignee: MAKO Surgical Corp.
    Inventors: Hyosig Kang, Jason Otto
  • Patent number: 9974613
    Abstract: A robotic surgery method for cutting a bone of a patient includes characterizing the geometry and positioning of the bone and manually moving a handheld manipulator, the handheld manipulator operatively coupled to a bone cutting tool having an end effector portion, to cut a portion of the bone with the end effector portion. The handheld manipulator further comprises a manipulator housing and an actuator assembly movably coupled between the manipulator housing and the bone cutting tool. The method further includes causing the actuator assembly to automatically move relative to the manipulator housing to maintain the end effector portion of the tool within a desired bone cutting envelope in response to movement of the manipulator housing relative to the bone.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: May 22, 2018
    Assignee: MAKO Surgical Corp.
    Inventors: Hyosig Kang, Scott Nortman
  • Patent number: 9921712
    Abstract: A system for providing substantially stable control of a surgical instrument is provided. The system includes a surgical manipulator for manipulating the surgical instrument and at least one computer configured to identify a first subset and a second subset of interaction geometric primitives associated with a virtual tool; determine, based on the first subset, control forces in a first subspace; and determine based on the second subset, control forces in a second subspace having at least one additional dimension. Control forces in the additional dimension are only determined based on the second subset of primitives, which is different than the first subset of primitives. The computer is further configured to determine a torque to constrain an orientation of the surgical instrument, wherein determining the torque comprises defining a virtual tool normal and a control plane normal and using the virtual tool normal and control plane normal to calculate the torque.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: March 20, 2018
    Assignee: MAKO Surgical Corp.
    Inventors: Christopher Alan Lightcap, Hyosig Kang, David Gene Bowling, John Michael Stuart, Jerry A. Culp, Donald W. Malackowski, Jose Luis Moctezuma de la Barrera, Patrick Roessler, Joel N. Beer
  • Publication number: 20180064492
    Abstract: A computer-assisted surgery system may have a robotic arm including a surgical tool and a processor communicatively connected to the robotic aim. The processor may be configured to receive, from a neural monitor, a signal indicative of a distance between the surgical tool and a portion of a patient's anatomy including nervous tissue. The processor may be further configured to generate a command for altering a degree to which the robotic aim resists movement based on the signal received from the neural monitor; and send the command to the robotic arm.
    Type: Application
    Filed: October 27, 2017
    Publication date: March 8, 2018
    Inventors: Chris Alan Lightcap, Hyosig Kang, Arthur E. Quaid, III, Rony Abovitz
  • Publication number: 20180055517
    Abstract: A robotic surgery method includes tracking a position of a surgical tool as it is manually manipulated to perform a procedure. The tool is coupled to a handheld manipulator assembly, and the handheld manipulator assembly includes a handheld portion configured to be manually supported and moved by a user and a tool drive assembly supported by the handheld portion. The manipulator assembly further includes a plurality of elongate structural members coupled between the tool drive assembly and the handheld portion, at least one pivotal link arranged between the tool drive assembly and the plurality of elongate structural members, a plurality of lead screws and actuators supported by the handheld portion, and a controller in communication with the plurality of actuators. The method further includes selectively operating the actuators to move the tool drive assembly relative to the handheld portion based on the tracked position of the tool.
    Type: Application
    Filed: November 6, 2017
    Publication date: March 1, 2018
    Inventors: Hyosig Kang, Scott Nortman
  • Publication number: 20180042650
    Abstract: Disclosed herein are gear shifters to reverse an output shaft rotation and a method for using the same. A gear shifter in accordance with the present invention may include a housing, an input shaft, an output shaft and an idler shaft. The input shaft may have input gears, the output shaft may have output gears and the idler shaft may have idler gears. The output shaft may be slidably coupled with the input shaft and the idler shaft to rotate in a first direction in a first position and in a second opposite direction in a second position. A method of reversing an output shaft direction using a gear shifter may include the steps of pushing the gear shifter in a first direction to rotate the output shaft in a first direction and pushing the gear shifter in a second direction to rotate the output shaft in a second direction.
    Type: Application
    Filed: August 10, 2017
    Publication date: February 15, 2018
    Inventors: Xiao Hui Gao, Hyosig Kang, Daryle Lee
  • Publication number: 20180021097
    Abstract: A method for controlling a surgical tool includes associating a joint of a patient with a representation of the joint, collecting data indicating at least one of a position and an orientation of a first bone and a second bone of the joint as the joint is moved through a range of motion, and creating a surgical plan based at least in part on the data collected. The method further includes establishing a virtual cutting boundary on the representation of the joint based on the surgical plan, superimposing a representation of the surgical tool on the representation of the joint, wherein the surgical tool is to be operated by a user to execute the surgical plan during a surgical procedure, and controlling the surgical tool to prevent the surgical tool from cutting a portion of the joint outside a boundary that corresponds to the virtual cutting boundary.
    Type: Application
    Filed: October 2, 2017
    Publication date: January 25, 2018
    Inventors: Arthur Quaid, Hyosig Kang, Dennis Moses, Rony Abovitz, Scott Illsley
  • Publication number: 20180014891
    Abstract: A method for performing a revision surgery using a robotic-assisted surgery system includes determining information related to an interface area between an implant component and a bone, and generating a planned virtual boundary associated with a portion of the interface area to be removed in a representation of the implant and the bone, based at least in part on the information related to the interface area. The method further includes tracking movement in the physical space of a cutting tool such that movement of the cutting tool is correlated with movement of a virtual tool, and providing a constraint on the cutting tool while the cutting tool removes the portion of the interface area. The constraint is based on a relationship between the virtual tool and the planned virtual boundary. The portion of the interface area is removed to remove the implant component from the bone.
    Type: Application
    Filed: July 13, 2017
    Publication date: January 18, 2018
    Inventors: Viktor Krebs, Hyosig Kang, Snehal Kasodekar, Matt Harrow, Jienan Ding, Ta-Cheng Chang, Min Wu, Jean Gonzalez, Peter Ebbitt