Patents by Inventor Hyoung-Chul Kim

Hyoung-Chul Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11855286
    Abstract: Disclosed are a cathode for an all-solid-state battery including a cathode thin film for an all-solid-state battery or a cathode composite membrane for an all-solid-state battery, and an all-solid-state battery including the same. The cathode for an all-solid-state battery contains a grain that has a plane having a low surface energy and has a grain boundary arranged parallel to the electron movement direction, thus effectively lowering the interfacial resistance of the thin film while suppressing the dissolution and diffusion of the transition metal, thereby improving the cycle stability of the all-solid-state battery including the same.
    Type: Grant
    Filed: November 27, 2020
    Date of Patent: December 26, 2023
    Assignee: Korea Institute of Science and Technology
    Inventors: Sang Baek Park, Byung Kook Kim, Jong Ho Lee, Ji Won Son, Kyung Joong Yoon, Hyoung Chul Kim, Ho Il Ji, Sung Eun Yang, Seung Hwan Lee, Joo Sun Kim
  • Publication number: 20230193099
    Abstract: The present invention relates to a sealant composition, including: organohydroxypolysiloxane, precipitated calcium carbonate, ground calcium carbonate, carbon black, a thickener, and a curing agent, wherein the thickener is polyether-modified organopolysiloxane.
    Type: Application
    Filed: December 13, 2022
    Publication date: June 22, 2023
    Applicant: KCC Silicone Corporation
    Inventors: Hyoung Chul Kim, Woo Jin Lee, Hyun Min Yim, Myung Su Ahn
  • Patent number: 11631878
    Abstract: Disclosed is a method of manufacturing a solid oxide fuel cell including a multi-layered electrolyte layer using a calendering process. The method for manufacturing a solid oxide fuel cell is a continuous process, thus providing high productivity and maximizing facility investment and processing costs. In addition, the solid oxide fuel cell manufactured by the method includes an anode that is free of interfacial defects and has a uniform packing structure, thereby advantageously greatly improving the production yield and power density. In addition, the solid oxide fuel cell has excellent interfacial bonding strength between respective layers included therein, and includes a multi-layered electrolyte layer in which the secondary phase at the interface is suppressed and which has increased density, thereby advantageously providing excellent output characteristics and long-term stability even at an intermediate operating temperature.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: April 18, 2023
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Ho Il Ji, Jong Ho Lee, Byung Kook Kim, Ji Won Son, Kyung Joong Yoon, Hyoung Chul Kim, Sang Baek Park, Sung Eun Yang, Jun Seok Kim
  • Patent number: 11575149
    Abstract: A method for preparing a solid electrolyte for an all-solid state battery, may include obtaining a slurry by dispersing a first raw material comprising lithium sulfide; and a second raw material selected from the group consisting of silicon sulfide, phosphorus sulfide, germanium sulfide, boron sulfide, and a combination thereof in a solvent; and drying the slurry.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: February 7, 2023
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Korea Institute of Science and Technology
    Inventors: Jae Min Lim, Ju Yeong Seong, Yong Jun Jang, Hun Gi Jung, Hyoung Chul Kim, Eu Deum Jung, Bin Na Yoon
  • Patent number: 11562108
    Abstract: Disclosed is a method for analyzing a sulfide-based solid electrolyte using computer simulation including connecting, by a user, to a client accessible to a server, inputting information of a sulfide-based solid electrolyte to be analyzed to the client, transmitting, by the client, the information to the server, implementing, by the server, generation of a three-dimensional structure in which anion clusters and lithium ions are disposed, based on the transmitted information, feeding back, by the server, an implementation result to the client, and displaying, by the client, the feedback result. In addition, properties of sulfide-based solid electrolytes, which cannot be observed by experimentation, can be analyzed based on lithium, ion conductivity.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: January 24, 2023
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyoung chul Kim, Byung Kook Kim, Hae Weon Lee, Jong Ho Lee, Ji Won Son, Hun Gi Jung, Ji Su Kim, Sung Jun Choi, Eu Deum Jung
  • Publication number: 20220393180
    Abstract: Disclosed is an anode-free all-solid-state battery having improved charge/discharge cycle stability. Specifically, the anode-free all-solid-state battery includes a cathode layer containing a cathode active material, an anode current collector layer, and a solid electrolyte layer interposed between the cathode layer and the anode current collector layer, wherein the anode current collector layer has a surface roughness (Rq) of 100 nm to 1,000 nm.
    Type: Application
    Filed: March 1, 2022
    Publication date: December 8, 2022
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Baek PARK, Byung Kook KIM, Jong Ho LEE, Ji Won SON, Kyung Joong YOON, Hyoung Chul KIM, HO IL JI, Sung Eun YANG, Deok Hwang KWON, Hyung Mook KANG, Dong Hee GU
  • Publication number: 20220166056
    Abstract: Provided are a lithium-argyrodite ionic superconductor containing a halogen element and a method for preparing the same, wherein an argyrodite-type crystal structure can be maintained and lithium ion conductivity can be greatly improved by combining specific elements at a specific molar ratio.
    Type: Application
    Filed: March 11, 2021
    Publication date: May 26, 2022
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyoung Chul KIM, Byung Kook KIM, Jong Ho LEE, Ji Won SON, Kyung Joong YOON, HO IL JI, Sung Eun YANG, Sang Baek PARK, Hun Gi JUNG, Sung Soo SHIN, Ji Su KIM, Eu Deum JUNG
  • Publication number: 20220158209
    Abstract: Disclosed is a method of manufacturing a solid oxide fuel cell including a multi-layered electrolyte layer using a calendering process. The method for manufacturing a solid oxide fuel cell is a continuous process, thus providing high productivity and maximizing facility investment and processing costs. In addition, the solid oxide fuel cell manufactured by the method includes an anode that is free of interfacial defects and has a uniform packing structure, thereby advantageously greatly improving the production yield and power density. In addition, the solid oxide fuel cell has excellent interfacial bonding strength between respective layers included therein, and includes a multi-layered electrolyte layer in which the secondary phase at the interface is suppressed and which has increased density, thereby advantageously providing excellent output characteristics and long-term stability even at an intermediate operating temperature.
    Type: Application
    Filed: March 25, 2021
    Publication date: May 19, 2022
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: HO IL JI, Jong Ho LEE, Byung Kook KIM, Ji Won SON, Kyung Joong YOON, Hyoung Chul KIM, Sang Baek PARK, Sung Eun YANG, Jun Seok KIM
  • Patent number: 11329314
    Abstract: Disclosed are a sulfide-based solid electrolyte imparted with improved lithium ion conductivity and a method of preparing the same. More particularly, disclosed is a sulfide-based solid electrolyte containing a lithium element (Li), a phosphorus element (P), a sulfur element (S) and a halogen element (X), and including a crystal phase of an argyrodite crystal structure, wherein a molar ratio (X/P) of the halogen element (X) to the phosphorus element (P) is higher than 1.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: May 10, 2022
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyoung chul Kim, Byung Kook Kim, Hun Gi Jung, Kyung Yoon Chung, Jong Ho Lee, Hae Weon Lee, Ji Won Son, Eu Deum Jung, Ji Su Kim, Sung Jun Choi
  • Publication number: 20220131142
    Abstract: Disclosed are a cathode for an all-solid-state battery including a cathode thin film for an all-solid-state battery or a cathode composite membrane for an all-solid-state battery, and an all-solid-state battery including the same. The cathode for an all-solid-state battery contains a grain that has a plane having a low surface energy and has a grain boundary arranged parallel to the electron movement direction, thus effectively lowering the interfacial resistance of the thin film while suppressing the dissolution and diffusion of the transition metal, thereby improving the cycle stability of the all-solid-state battery including the same.
    Type: Application
    Filed: November 27, 2020
    Publication date: April 28, 2022
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Baek PARK, Byung Kook KIM, Jong Ho LEE, Ji Won SON, Kyung Joong YOON, Hyoung Chul KIM, HO IL JI, Sung Eun YANG, Seung Hwan LEE, Joo Sun KIM
  • Publication number: 20200358131
    Abstract: Disclosed are a sulfide-based solid electrolyte imparted with improved lithium ion conductivity and a method of preparing the same. More particularly, disclosed is a sulfide-based solid electrolyte containing a lithium element (Li), a phosphorus element (P), a sulfur element (S) and a halogen element (X), and including a crystal phase of an argyrodite crystal structure, wherein a molar ratio (X/P) of the halogen element (X) to the phosphorus element (P) is higher than 1.
    Type: Application
    Filed: October 8, 2019
    Publication date: November 12, 2020
    Inventors: Hyoung chul KIM, Byung Kook KIM, Hun Gi JUNG, Kyung Yoon CHUNG, Jong Ho LEE, Hae Weon LEE, Ji Won SON, Eu Deum JUNG, Ji Su KIM, Sung Jun CHOI
  • Patent number: 10673073
    Abstract: A cathode material may include a coating layer capable of preventing transition metal cations from being diffused between a cathode active material and a solid electrolyte when an all-solid state battery is charged and discharged, and a method for preparing the same.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: June 2, 2020
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Korea Institute of Science and Technology
    Inventors: Jae Min Lim, Ju Yeong Seong, Yong Jun Jang, Hyoung Chul Kim, Hun Gi Jung, Sung Jun Choi, Eu Deum Jung
  • Publication number: 20200028207
    Abstract: Disclosed are a lithium ion-conducting sulfide-based solid electrolyte containing selenium and a method for preparing the same. More specifically, disclosed is a lithium ion-conducting sulfide-based solid electrolyte containing selenium that is capable of significantly improving lithium ion conductivity by successfully replacing a sulfur (S) element with a selenium (Se) element, while maintaining an argyrodite-type crystal structure of a sulfide-based solid electrolyte represented by Li6PS5Cl.
    Type: Application
    Filed: November 13, 2018
    Publication date: January 23, 2020
    Inventors: Hyoung chul KIM, Hae Weon LEE, Byung Kook KIM, Jong Ho LEE, Ji Won SON, Hun Gi JUNG, Eu Deum JUNG, Ji Su KIM, Sung Jun CHOI
  • Publication number: 20190325096
    Abstract: Disclosed is a method for analyzing a sulfide-based solid electrolyte using computer simulation including connecting, by a user, to a client accessible to a server, inputting information of a sulfide-based solid electrolyte to be analyzed to the client, transmitting, by the client, the information to the server, implementing, by the server, generation of a three-dimensional structure in which anion clusters and lithium ions are disposed, based on the transmitted information, feeding back, by the server, an implementation result to the client, and displaying, by the client, the feedback result. In addition, properties of sulfide-based solid electrolytes, which cannot be observed by experimentation, can be analyzed based on lithium, ion conductivity.
    Type: Application
    Filed: November 14, 2018
    Publication date: October 24, 2019
    Inventors: Hyoung chul KIM, Byung Kook KIM, Hae Weon LEE, Jong Ho LEE, Ji Won SON, Hun Gi JUNG, Ji Su KIM, Sung Jun CHOI, Eu Deum JUNG
  • Patent number: 10381682
    Abstract: Disclosed is a lithium ion-conductive sulfide-based solid electrolyte which includes nickel sulfide and, accordingly, the solid electrolyte can obtain a novel structure and performance. More particularly, the sulfide-based solid electrolyte includes lithium sulfide (Li2S), diphosphorus pentasulfide (P2S5), and nickel sulfide (Ni3S2) in a specific ratio by mol % and exhibits a novel crystal structure due to nickel (Ni). Accordingly, the sulfide-based solid electrolyte has greater lithium ion conductivity than an conventional sulfide-based solid electrolyte and a stable crystal structure.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: August 13, 2019
    Assignees: Hyundai Motor Company, Korea Institute of Science and Technology
    Inventors: Yong Jun Jang, Ju Young Sung, Yong Sung Lee, Ho Taek Lee, Hyoung Chul Kim, Jong Ho Lee, Hun Gi Jung, Soo Young Cho, Yoon Sung Lee
  • Publication number: 20180323435
    Abstract: A cathode material may include a coating layer capable of preventing transition metal cations from being diffused between a cathode active material and a solid electrolyte when an all-solid state battery is charged and discharged, and a method for preparing the same.
    Type: Application
    Filed: December 4, 2017
    Publication date: November 8, 2018
    Applicants: Hyundai Motor Company, Kia Motors Corporation, Korea Institute of Science and Technology
    Inventors: Jae Min Lim, Ju Yeong Seong, Yong Jun Jang, Hyoung Chul Kim, Hun Gi Jung, Sung Jun Choi, Eu Deum Jung
  • Publication number: 20180323469
    Abstract: A method for preparing a solid electrolyte for an all-solid state battery, may include obtaining a slurry by dispersing a first raw material comprising lithium sulfide; and a second raw material selected from the group consisting of silicon sulfide, phosphorus sulfide, germanium sulfide, boron sulfide, and a combination thereof in a solvent; and drying the slurry.
    Type: Application
    Filed: December 4, 2017
    Publication date: November 8, 2018
    Applicants: Hyundai Motor Company, Kia Motors Corporation, Korea Institute of Science and Technology
    Inventors: Jae Min Lim, Ju Yeong Seong, Yong Jun Jang, Hun Gi Jung, Hyoung Chul Kim, Eu Deum Jung, Bin Na Yoon
  • Patent number: 10074871
    Abstract: A method for preparing a lithium ion conductive sulfide, which is capable of independently controlling the elemental ratio of lithium (Li), phosphorus (P), sulfur (S), etc, is provided. The method for preparing a lithium ion conductive sulfide can provide a lithium ion conductive sulfide having a crystal structure and an anion cluster distribution distinguished from those of existing ones.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: September 11, 2018
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyoung Chul Kim, Hun Gi Jung, Jong Ho Lee, Hae Weon Lee, Byung Kook Kim, Ji Won Son, Wo Dum Jung
  • Patent number: 10020536
    Abstract: A method for preparing a sulfide-based solid electrolyte which is stable upon exposure to the air is provided. Specifically, a stabilization layer is formed on the surface of a sulfide-based solid electrolyte particle through treatment with a reactive gas. The sulfide-based solid electrolyte with superior air stability can be obtained because oxidation or reduction reactions with water, etc. in the air occur on the stabilization layer rather than on the sulfide-based solid electrolyte particle.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: July 10, 2018
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyoung Chul Kim, Sung Jun Choi, Jeong Hun Kim, Wo Dum Jung, Hun Gi Jung, Ji Won Son, Jong Ho Lee, Byung Kook Kim, Hae Weon Lee
  • Patent number: 9975107
    Abstract: A multi-scaled oxygen storage material wherein cobalt element is complexed with a size of an atom or hundreds of nanometers or smaller in a ceria-zirconia solid solution and a method for preparing the same as provided. Specifically, the multi-scaled oxygen storage material contains a ceria-zirconia solid solution, a cobalt doping contained in the solid solution in the form of an atom and a cobalt-based nanocluster dispersed in the solid solution as cobalt oxide and exhibits a microstructure distinguished from that of the existing ceria-zirconia (CZO)-based oxygen storage material as well as remarkably improved oxygen storage and release ability, and the method for preparing the same is provided.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: May 22, 2018
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyoung Chul Kim, Hae Weon Lee, Byung Kook Kim, Jong Ho Lee, Ji Won Son, Kyung Joong Yoon, Jong Sup Hong, Seung Hak Song