Patents by Inventor Hyoung-Chul Kim

Hyoung-Chul Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240135744
    Abstract: A display device comprises a display panel comprising an image display area and a non-display area, display pixels comprising light-emitting elements in the image display area and pixel driving units connected to the light-emitting elements, light-sensing pixels comprising photo-detecting units in a fingerprint sensing area in the image display area, and sense driving units connected to the photo-detecting units, a light-sensing reset driver configured to supply reset signals to the sense driving units of the light-sensing pixels for at least each horizontal line among the light-sensing pixels in response to a line select signal from a display driving circuit; and a fingerprint scan driver configured to sequentially supply a fingerprint scan signal to the sense driving units of the light-sensing pixels in response to a fingerprint scan control signal from the display driving circuit.
    Type: Application
    Filed: September 27, 2023
    Publication date: April 25, 2024
    Inventors: Hyun Dae LEE, Il Nam KIM, Hyoung Wook JANG, Kang Bin JO, Go Eun CHA, Hee Chul HWANG
  • Publication number: 20240136844
    Abstract: Disclosed is an apparatus and method for controlling step charging of a secondary battery. A charging control unit determines a SOC, an OCV and a polarization voltage of the secondary battery, determines an OCV deviation corresponding to a difference between the OCV and a predefined minimum OCV value, determines a correction factor corresponding to the polarization voltage and the OCV deviation, determines a look-up SOC by correcting the SOC according to the correction factor, determines the magnitude of a charging current corresponding to the look-up SOC, and provides the determined charging current to a charging device.
    Type: Application
    Filed: December 5, 2023
    Publication date: April 25, 2024
    Applicant: LG ENERGY SOLUTION, LTD.
    Inventors: Jin-Hyung LIM, Young-Jin KIM, Gi-Min NAM, Hyoung Jun AHN, Kyu-Chul LEE, Won-Tae JOE
  • Patent number: 11855286
    Abstract: Disclosed are a cathode for an all-solid-state battery including a cathode thin film for an all-solid-state battery or a cathode composite membrane for an all-solid-state battery, and an all-solid-state battery including the same. The cathode for an all-solid-state battery contains a grain that has a plane having a low surface energy and has a grain boundary arranged parallel to the electron movement direction, thus effectively lowering the interfacial resistance of the thin film while suppressing the dissolution and diffusion of the transition metal, thereby improving the cycle stability of the all-solid-state battery including the same.
    Type: Grant
    Filed: November 27, 2020
    Date of Patent: December 26, 2023
    Assignee: Korea Institute of Science and Technology
    Inventors: Sang Baek Park, Byung Kook Kim, Jong Ho Lee, Ji Won Son, Kyung Joong Yoon, Hyoung Chul Kim, Ho Il Ji, Sung Eun Yang, Seung Hwan Lee, Joo Sun Kim
  • Publication number: 20230193099
    Abstract: The present invention relates to a sealant composition, including: organohydroxypolysiloxane, precipitated calcium carbonate, ground calcium carbonate, carbon black, a thickener, and a curing agent, wherein the thickener is polyether-modified organopolysiloxane.
    Type: Application
    Filed: December 13, 2022
    Publication date: June 22, 2023
    Applicant: KCC Silicone Corporation
    Inventors: Hyoung Chul Kim, Woo Jin Lee, Hyun Min Yim, Myung Su Ahn
  • Patent number: 11631878
    Abstract: Disclosed is a method of manufacturing a solid oxide fuel cell including a multi-layered electrolyte layer using a calendering process. The method for manufacturing a solid oxide fuel cell is a continuous process, thus providing high productivity and maximizing facility investment and processing costs. In addition, the solid oxide fuel cell manufactured by the method includes an anode that is free of interfacial defects and has a uniform packing structure, thereby advantageously greatly improving the production yield and power density. In addition, the solid oxide fuel cell has excellent interfacial bonding strength between respective layers included therein, and includes a multi-layered electrolyte layer in which the secondary phase at the interface is suppressed and which has increased density, thereby advantageously providing excellent output characteristics and long-term stability even at an intermediate operating temperature.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: April 18, 2023
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Ho Il Ji, Jong Ho Lee, Byung Kook Kim, Ji Won Son, Kyung Joong Yoon, Hyoung Chul Kim, Sang Baek Park, Sung Eun Yang, Jun Seok Kim
  • Patent number: 11575149
    Abstract: A method for preparing a solid electrolyte for an all-solid state battery, may include obtaining a slurry by dispersing a first raw material comprising lithium sulfide; and a second raw material selected from the group consisting of silicon sulfide, phosphorus sulfide, germanium sulfide, boron sulfide, and a combination thereof in a solvent; and drying the slurry.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: February 7, 2023
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Korea Institute of Science and Technology
    Inventors: Jae Min Lim, Ju Yeong Seong, Yong Jun Jang, Hun Gi Jung, Hyoung Chul Kim, Eu Deum Jung, Bin Na Yoon
  • Patent number: 11562108
    Abstract: Disclosed is a method for analyzing a sulfide-based solid electrolyte using computer simulation including connecting, by a user, to a client accessible to a server, inputting information of a sulfide-based solid electrolyte to be analyzed to the client, transmitting, by the client, the information to the server, implementing, by the server, generation of a three-dimensional structure in which anion clusters and lithium ions are disposed, based on the transmitted information, feeding back, by the server, an implementation result to the client, and displaying, by the client, the feedback result. In addition, properties of sulfide-based solid electrolytes, which cannot be observed by experimentation, can be analyzed based on lithium, ion conductivity.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: January 24, 2023
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyoung chul Kim, Byung Kook Kim, Hae Weon Lee, Jong Ho Lee, Ji Won Son, Hun Gi Jung, Ji Su Kim, Sung Jun Choi, Eu Deum Jung
  • Publication number: 20220393180
    Abstract: Disclosed is an anode-free all-solid-state battery having improved charge/discharge cycle stability. Specifically, the anode-free all-solid-state battery includes a cathode layer containing a cathode active material, an anode current collector layer, and a solid electrolyte layer interposed between the cathode layer and the anode current collector layer, wherein the anode current collector layer has a surface roughness (Rq) of 100 nm to 1,000 nm.
    Type: Application
    Filed: March 1, 2022
    Publication date: December 8, 2022
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Baek PARK, Byung Kook KIM, Jong Ho LEE, Ji Won SON, Kyung Joong YOON, Hyoung Chul KIM, HO IL JI, Sung Eun YANG, Deok Hwang KWON, Hyung Mook KANG, Dong Hee GU
  • Publication number: 20220166056
    Abstract: Provided are a lithium-argyrodite ionic superconductor containing a halogen element and a method for preparing the same, wherein an argyrodite-type crystal structure can be maintained and lithium ion conductivity can be greatly improved by combining specific elements at a specific molar ratio.
    Type: Application
    Filed: March 11, 2021
    Publication date: May 26, 2022
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyoung Chul KIM, Byung Kook KIM, Jong Ho LEE, Ji Won SON, Kyung Joong YOON, HO IL JI, Sung Eun YANG, Sang Baek PARK, Hun Gi JUNG, Sung Soo SHIN, Ji Su KIM, Eu Deum JUNG
  • Publication number: 20220158209
    Abstract: Disclosed is a method of manufacturing a solid oxide fuel cell including a multi-layered electrolyte layer using a calendering process. The method for manufacturing a solid oxide fuel cell is a continuous process, thus providing high productivity and maximizing facility investment and processing costs. In addition, the solid oxide fuel cell manufactured by the method includes an anode that is free of interfacial defects and has a uniform packing structure, thereby advantageously greatly improving the production yield and power density. In addition, the solid oxide fuel cell has excellent interfacial bonding strength between respective layers included therein, and includes a multi-layered electrolyte layer in which the secondary phase at the interface is suppressed and which has increased density, thereby advantageously providing excellent output characteristics and long-term stability even at an intermediate operating temperature.
    Type: Application
    Filed: March 25, 2021
    Publication date: May 19, 2022
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: HO IL JI, Jong Ho LEE, Byung Kook KIM, Ji Won SON, Kyung Joong YOON, Hyoung Chul KIM, Sang Baek PARK, Sung Eun YANG, Jun Seok KIM
  • Patent number: 11329314
    Abstract: Disclosed are a sulfide-based solid electrolyte imparted with improved lithium ion conductivity and a method of preparing the same. More particularly, disclosed is a sulfide-based solid electrolyte containing a lithium element (Li), a phosphorus element (P), a sulfur element (S) and a halogen element (X), and including a crystal phase of an argyrodite crystal structure, wherein a molar ratio (X/P) of the halogen element (X) to the phosphorus element (P) is higher than 1.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: May 10, 2022
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyoung chul Kim, Byung Kook Kim, Hun Gi Jung, Kyung Yoon Chung, Jong Ho Lee, Hae Weon Lee, Ji Won Son, Eu Deum Jung, Ji Su Kim, Sung Jun Choi
  • Publication number: 20220131142
    Abstract: Disclosed are a cathode for an all-solid-state battery including a cathode thin film for an all-solid-state battery or a cathode composite membrane for an all-solid-state battery, and an all-solid-state battery including the same. The cathode for an all-solid-state battery contains a grain that has a plane having a low surface energy and has a grain boundary arranged parallel to the electron movement direction, thus effectively lowering the interfacial resistance of the thin film while suppressing the dissolution and diffusion of the transition metal, thereby improving the cycle stability of the all-solid-state battery including the same.
    Type: Application
    Filed: November 27, 2020
    Publication date: April 28, 2022
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Baek PARK, Byung Kook KIM, Jong Ho LEE, Ji Won SON, Kyung Joong YOON, Hyoung Chul KIM, HO IL JI, Sung Eun YANG, Seung Hwan LEE, Joo Sun KIM
  • Publication number: 20200358131
    Abstract: Disclosed are a sulfide-based solid electrolyte imparted with improved lithium ion conductivity and a method of preparing the same. More particularly, disclosed is a sulfide-based solid electrolyte containing a lithium element (Li), a phosphorus element (P), a sulfur element (S) and a halogen element (X), and including a crystal phase of an argyrodite crystal structure, wherein a molar ratio (X/P) of the halogen element (X) to the phosphorus element (P) is higher than 1.
    Type: Application
    Filed: October 8, 2019
    Publication date: November 12, 2020
    Inventors: Hyoung chul KIM, Byung Kook KIM, Hun Gi JUNG, Kyung Yoon CHUNG, Jong Ho LEE, Hae Weon LEE, Ji Won SON, Eu Deum JUNG, Ji Su KIM, Sung Jun CHOI
  • Patent number: 10673073
    Abstract: A cathode material may include a coating layer capable of preventing transition metal cations from being diffused between a cathode active material and a solid electrolyte when an all-solid state battery is charged and discharged, and a method for preparing the same.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: June 2, 2020
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Korea Institute of Science and Technology
    Inventors: Jae Min Lim, Ju Yeong Seong, Yong Jun Jang, Hyoung Chul Kim, Hun Gi Jung, Sung Jun Choi, Eu Deum Jung
  • Publication number: 20200028207
    Abstract: Disclosed are a lithium ion-conducting sulfide-based solid electrolyte containing selenium and a method for preparing the same. More specifically, disclosed is a lithium ion-conducting sulfide-based solid electrolyte containing selenium that is capable of significantly improving lithium ion conductivity by successfully replacing a sulfur (S) element with a selenium (Se) element, while maintaining an argyrodite-type crystal structure of a sulfide-based solid electrolyte represented by Li6PS5Cl.
    Type: Application
    Filed: November 13, 2018
    Publication date: January 23, 2020
    Inventors: Hyoung chul KIM, Hae Weon LEE, Byung Kook KIM, Jong Ho LEE, Ji Won SON, Hun Gi JUNG, Eu Deum JUNG, Ji Su KIM, Sung Jun CHOI
  • Publication number: 20190325096
    Abstract: Disclosed is a method for analyzing a sulfide-based solid electrolyte using computer simulation including connecting, by a user, to a client accessible to a server, inputting information of a sulfide-based solid electrolyte to be analyzed to the client, transmitting, by the client, the information to the server, implementing, by the server, generation of a three-dimensional structure in which anion clusters and lithium ions are disposed, based on the transmitted information, feeding back, by the server, an implementation result to the client, and displaying, by the client, the feedback result. In addition, properties of sulfide-based solid electrolytes, which cannot be observed by experimentation, can be analyzed based on lithium, ion conductivity.
    Type: Application
    Filed: November 14, 2018
    Publication date: October 24, 2019
    Inventors: Hyoung chul KIM, Byung Kook KIM, Hae Weon LEE, Jong Ho LEE, Ji Won SON, Hun Gi JUNG, Ji Su KIM, Sung Jun CHOI, Eu Deum JUNG
  • Patent number: 10381682
    Abstract: Disclosed is a lithium ion-conductive sulfide-based solid electrolyte which includes nickel sulfide and, accordingly, the solid electrolyte can obtain a novel structure and performance. More particularly, the sulfide-based solid electrolyte includes lithium sulfide (Li2S), diphosphorus pentasulfide (P2S5), and nickel sulfide (Ni3S2) in a specific ratio by mol % and exhibits a novel crystal structure due to nickel (Ni). Accordingly, the sulfide-based solid electrolyte has greater lithium ion conductivity than an conventional sulfide-based solid electrolyte and a stable crystal structure.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: August 13, 2019
    Assignees: Hyundai Motor Company, Korea Institute of Science and Technology
    Inventors: Yong Jun Jang, Ju Young Sung, Yong Sung Lee, Ho Taek Lee, Hyoung Chul Kim, Jong Ho Lee, Hun Gi Jung, Soo Young Cho, Yoon Sung Lee
  • Publication number: 20180323469
    Abstract: A method for preparing a solid electrolyte for an all-solid state battery, may include obtaining a slurry by dispersing a first raw material comprising lithium sulfide; and a second raw material selected from the group consisting of silicon sulfide, phosphorus sulfide, germanium sulfide, boron sulfide, and a combination thereof in a solvent; and drying the slurry.
    Type: Application
    Filed: December 4, 2017
    Publication date: November 8, 2018
    Applicants: Hyundai Motor Company, Kia Motors Corporation, Korea Institute of Science and Technology
    Inventors: Jae Min Lim, Ju Yeong Seong, Yong Jun Jang, Hun Gi Jung, Hyoung Chul Kim, Eu Deum Jung, Bin Na Yoon
  • Publication number: 20180323435
    Abstract: A cathode material may include a coating layer capable of preventing transition metal cations from being diffused between a cathode active material and a solid electrolyte when an all-solid state battery is charged and discharged, and a method for preparing the same.
    Type: Application
    Filed: December 4, 2017
    Publication date: November 8, 2018
    Applicants: Hyundai Motor Company, Kia Motors Corporation, Korea Institute of Science and Technology
    Inventors: Jae Min Lim, Ju Yeong Seong, Yong Jun Jang, Hyoung Chul Kim, Hun Gi Jung, Sung Jun Choi, Eu Deum Jung
  • Patent number: 10074871
    Abstract: A method for preparing a lithium ion conductive sulfide, which is capable of independently controlling the elemental ratio of lithium (Li), phosphorus (P), sulfur (S), etc, is provided. The method for preparing a lithium ion conductive sulfide can provide a lithium ion conductive sulfide having a crystal structure and an anion cluster distribution distinguished from those of existing ones.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: September 11, 2018
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyoung Chul Kim, Hun Gi Jung, Jong Ho Lee, Hae Weon Lee, Byung Kook Kim, Ji Won Son, Wo Dum Jung