Patents by Inventor Hyuck Hur

Hyuck Hur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250223192
    Abstract: A positive electrode active material includes a lithium composite metal oxide including nickel, cobalt, manganese, and aluminum. The positive electrode active material includes 85 mol % to 97 mol % of nickel, and 2 mol % to 5 mol % of cobalt, with respect to the total number of moles of metals other than lithium, and satisfies Expression (1): 0.25?I550/I700?0.4. In Expression (1), I700 and I550 are respectively a maximum value of a peak intensity appearing in a range of 600 ppm to 800 ppm and a maximum value of a peak intensity appearing in a range of 450 ppm to 650 ppm when a spectral analysis (peak deconvolution) is performed on a 1D NMR center band spectrum extracted from a 2D 7Li Magic Angle Turning Phase Adjusted Spinning Sideband (MATPASS) NMR spectrum.
    Type: Application
    Filed: April 7, 2023
    Publication date: July 10, 2025
    Applicant: LG Energy Solution, Ltd.
    Inventors: Gun Woo Kim, Cheol Hee Park, Hyuck Hur, So Ra Baek, Dong Hwi Kim, Kang joon Park, Wang Mo Jung, Sin Young Park
  • Publication number: 20250210653
    Abstract: A surface of a LiCoO2-based positive electrode active material to have a rock salt crystal structure is provided. Specifically, a positive electrode active material for a lithium rechargeable battery is provided, including: a core particle containing lithium cobalt oxide doped with aluminum (Al); and a coating layer positioned on a surface of the core particle and containing a cobalt (Co)-based compound having a rock salt crystal structure. A method of producing the positive electrode active material is also provided using a solid-phase method. The positive electrode active material can be applied to a positive electrode, lithium rechargeable battery, battery module, battery pack, and the like.
    Type: Application
    Filed: March 12, 2025
    Publication date: June 26, 2025
    Applicant: LG Energy Solution, Ltd.
    Inventors: Chi Ho Jo, Hyuck Hur, Seul Ki Kim, Wang Mo Jung, Gi Beom Han
  • Patent number: 12334554
    Abstract: A surface of a LiCoO2-based positive electrode active material to have a rock salt crystal structure is provided. Specifically, a positive electrode active material for a lithium rechargeable battery is provided, including: a core particle containing lithium cobalt oxide doped with aluminum (Al); and a coating layer positioned on a surface of the core particle and containing a cobalt (Co)-based compound having a rock salt crystal structure. A method of producing the positive electrode active material is also provided using a solid-phase method. The positive electrode active material can be applied to a positive electrode, lithium rechargeable battery, battery module, battery pack, and the like.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: June 17, 2025
    Assignee: LG Energy Solution, Ltd.
    Inventors: Chi Ho Jo, Hyuck Hur, Seul Ki Kim, Wang Mo Jung, Gi Beom Han
  • Publication number: 20250158022
    Abstract: A positive electrode material for a lithium secondary battery includes: a first positive electrode active material and a second positive electrode active material. The first positive electrode active material includes a lithium transition metal oxide in which a molar ratio of nickel among transition metals is 70 mol % or more, the second positive electrode active material includes a lithium transition metal oxide in which a molar ratio of nickel among transition metals is 25 mol % or more less than the molar ratio of the nickel among the transition metals of the first positive electrode active material, an average particle diameter of primary particles constituting the second positive electrode active material is larger than an average particle diameter of primary particles constituting the first positive electrode active material, and D50 of the second positive electrode active material is smaller than D50 of the first positive electrode active material.
    Type: Application
    Filed: February 15, 2023
    Publication date: May 15, 2025
    Applicant: LG Energy Solution, Ltd.
    Inventors: Kang Joon Park, So Ra Baek, Wang Mo Jung, Sin Young Park, Hyuck Hur, Dong Hwi Kim, Min Kwak, Seul Ki Chae
  • Publication number: 20250149571
    Abstract: The present invention relates to positive electrode active material powder including overlithiated manganese-based oxide particles, which are represented by the disclosed Formula 1 and are in the form of a single particle composed of one nodule or a pseudo-single particle that is a composite of 2 to 30 or less nodules, and a positive electrode and a lithium secondary battery which include the positive electrode active material powder.
    Type: Application
    Filed: February 10, 2023
    Publication date: May 8, 2025
    Applicant: LG Energy Solution, Ltd.
    Inventors: Hyuck Hur, Sin Young Park, Gi Beom Han, Dong Hwi Kim, Min Kwak, Seul Ki Chae, Kang Joon Park, Wang Mo Jung
  • Publication number: 20250118743
    Abstract: The present invention relates to a lithium secondary battery which includes a positive electrode including an overlithiated manganese-based oxide, in which an amount of manganese among total metals excluding lithium is greater than 50 mol % and a ratio (Li/Me) of the number of moles of the lithium to the number of moles of the total metals excluding the lithium is greater than 1, as a positive electrode active material; a negative electrode including a silicon-based negative electrode active material; a separator disposed between the positive electrode and the negative electrode; and an electrolyte, and satisfies Equation (1). 0.25 A ? B ? 0 . 6 ? A Equation ? ( 1 ) In Equation (1), A is a discharge curve area in a voltage range of 2.0 V to 4.6 V of a dQ/dV graph obtained by differentiating a graph of battery discharge capacity Q and voltage V after one cycle which are measured while charging the lithium secondary battery at 0.1 C to 4.
    Type: Application
    Filed: October 5, 2022
    Publication date: April 10, 2025
    Applicant: LG Energy Solution, Ltd.
    Inventors: Byung Chun Park, Wang Mo Jung, Sin Young Park, Hyuck Hur, Dong Hwi Kim
  • Publication number: 20250079458
    Abstract: A positive electrode active material powder includes overlithiated manganese-based oxide particles, which are represented by [Formula 1] and are in the form of a single particle composed of one nodule or a pseudo-single particle that is a composite of 2 to 30 nodules. LiaNibCocMndMeO2??[Formula 1] wherein 1<a, 0?b?0.5, 0?c?0.1, 0.5?d<1.0, and 0?e?0.2, and M is at least one selected from the group consisting of aluminum (Al), boron (B), cobalt (Co), tungsten (W), magnesium (Mg), vanadium (V), titanium (Ti), zinc (Zn), gallium (Ga), indium (In), ruthenium (Ru), niobium (Nb), tin (Sn), strontium (Sr), and zirconium (Zr). The positive electrode active material powder has an average particle diameter D50 of 2.5 ?m or less. A positive electrode and a lithium secondary battery which include the positive electrode active material powder are also provided.
    Type: Application
    Filed: February 10, 2023
    Publication date: March 6, 2025
    Applicant: LG Energy Solution, Ltd.
    Inventors: Hyuck Hur, Sin Young Park, Gi Beom Han, Dong Hwi Kim, Min Kwak, Seulki Chae, Kang Joon Park, Wang Mo Jung
  • Publication number: 20250038168
    Abstract: A method of manufacturing a lithium secondary battery includes (1) mixing a transition metal precursor and a lithium source material and then sintering the mixture to prepare a lithium composite transition metal oxide, (2) mixing the lithium composite transition metal oxide with a cobalt-containing raw material and heat-treating the mixture at 550° C. to 700° C. to form a cobalt coating layer on the oxide, (3) mixing the lithium composite transition metal oxide on which the cobalt coating layer is formed with a boron-containing raw material and heat-treating the mixture at 400° C. to 500° C. to prepare a positive electrode active material including a boron coating layer, (4) applying the positive electrode active material onto a positive electrode current collector to prepare a positive electrode, and (5) assembling the positive electrode, the negative electrode including a silicon-based negative electrode active material, and a separator, and injecting an electrolyte.
    Type: Application
    Filed: December 21, 2022
    Publication date: January 30, 2025
    Applicant: LG Energy Solution, Ltd
    Inventors: So Ra Baek, Kang Joon Park, Wang Mo Jung, Sin Young Park, Hyuck Hur, Dong Hwi Kim, Min Kwak, Seul Ki Chae
  • Patent number: 12126020
    Abstract: A positive electrode and a lithium secondary including the same is disclosed herein. In some embodiments, the positive electrode includes a positive electrode current collector, a first positive electrode active material layer and a second positive electrode active material layer sequentially stacked on the positive electrode current collector, wherein the first positive electrode active material layer and the second positive electrode active material layer include a bimodal positive active material, the first positive electrode active material layer includes small-diameter particles in the form of single particles, and the second positive electrode active material layer includes small-diameter particles in the form of secondary particles. The positive electrode has improved capacity, efficiency, lifespan, output properties, and thermal stability.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: October 22, 2024
    Assignee: LG Energy Solution, Ltd.
    Inventors: Dong Hwi Kim, Hak Yoon Kim, So Ra Baek, Hyuck Hur, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung, Dong Hun Lee
  • Patent number: 11942632
    Abstract: A positive electrode active material particle includes a core that contains lithium cobalt oxide represented by the following Chemical Formula LiaCo(1-x)MxO2-yAy and a shell that is coated on the surface of the core and contains composite metal oxide of a metal with an oxidation number of +2 and a metal with an oxidation number of +3. In particular, M is at least one selected from the group consisting of Ti, Mg, Zn, Si, Al, Zr, V, Mn, Nb and Ni. A is oxygen-substitutional halogen and 1.00?a?1.05, 0?x?0.05, and 0?y?0.001.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: March 26, 2024
    Assignee: LG Energy Solution, Ltd.
    Inventors: Hyuck Hur, Chi Ho Jo, Bo Ram Lee, Sung bin Park, Young uk Park, Wang Mo Jung
  • Publication number: 20240097112
    Abstract: A positive electrode for a lithium secondary battery includes a positive electrode collector, a first positive electrode active material layer formed on the positive electrode collector and includes a first positive electrode active material, and a second positive electrode active material layer formed on the first positive electrode active material layer and includes a second positive electrode active material. The first positive electrode active material and the second positive electrode active material include a lithium nickel-cobalt-based oxide in which an amount of nickel among total metallic components excluding lithium is 80 atm % or more, the first positive electrode active material has a molar ratio of nickel to cobalt of 18 or more, and the second positive electrode active material has a molar ratio of nickel to cobalt of less than 18.
    Type: Application
    Filed: February 25, 2022
    Publication date: March 21, 2024
    Applicant: LG Energy Solution, Ltd.
    Inventors: Dong Hun Lee, Hak Yoon Kim, So Ra Baek, Hyuck Hur, Dong Hwi Kim, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung
  • Publication number: 20240072244
    Abstract: A positive electrode active material for a lithium secondary battery comprising lithium transition metal oxide particles having a core-shell structure which includes a core portion and a shell portion disposed on a surface of the core portion. Wherein, the average crystallite size of the core portion is smaller than an average crystallite size of the shell portion and an amount of nickel among total transition metals included in the core portion and the shell portion is 80 atm % or more. A positive electrode active material, which suppresses decomposition of an electrolyte solution and occurrence of micro cracks of the positive electrode active material during charge and discharge by forming an average crystallite size of a core portion of the high-nickel positive electrode active material smaller than an average crystallite size of a shell portion, and a method of preparing the same.
    Type: Application
    Filed: February 24, 2022
    Publication date: February 29, 2024
    Applicant: LG Energy Solution, Ltd.
    Inventors: Dong Hun Lee, Hak Yoon Kim, So Ra Baek, Hyuck Hur, Dong Hwi Kim, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung
  • Publication number: 20240030414
    Abstract: Disclosed is a positive electrode material for a lithium secondary battery capable of improving the problems of resistance and lifetime deterioration of the battery by forming a thin and uniform metal oxide on the surface of the lithium nickel cobalt manganese-based positive electrode active material, and a method for preparing the same and a lithium secondary battery comprising the same. The method of preparing the positive electrode material for the lithium secondary battery comprises a method of coating a metal oxide on the surface of a lithium nickel cobalt manganese-based positive electrode active material through a chemical vapor deposition. The method includes placing the lithium nickel cobalt manganese-based positive electrode active material in a deposition apparatus and supplying a metal oxide precursor and a carrier gas, and the lithium nickel cobalt manganese-based positive electrode active material is stirred during deposition.
    Type: Application
    Filed: December 7, 2021
    Publication date: January 25, 2024
    Applicant: LG Energy Solution, Ltd.
    Inventors: Seulki Chae, Hakyoon Kim, Sora Baek, Hyuck Hur, Dong Hwi Kim, Hyeongil Kim, Wang Mo Jung, Donghun Lee
  • Publication number: 20240021788
    Abstract: A bimodal positive electrode active material includes a first lithium transition metal oxide and a second lithium transition metal oxide having an average particle diameter (D50) smaller than that of the first lithium transition metal oxide, wherein the first lithium transition metal oxide has higher particle strength and smaller crystalline size than the second lithium transition metal oxide, and a positive electrode and a lithium secondary battery which include the positive electrode active material. A positive electrode active material may improve high-temperature life characteristics and high-temperature storage characteristics of a lithium secondary battery. A positive electrode and a lithium secondary battery which include the positive electrode active material are also provided.
    Type: Application
    Filed: December 17, 2021
    Publication date: January 18, 2024
    Applicants: LG Energy Solution, Ltd., LG Energy Solution, Ltd.
    Inventors: So Ra Baek, Hak Yoon Kim, Hyuck Hur, Dong Hwi Kim, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung, Dong Hun Lee
  • Publication number: 20230402597
    Abstract: A positive electrode for a lithium secondary battery includes a positive electrode active material layer including: a first positive electrode active material represented by Formula 1 and having a crystalline size of 150 nm or more; a conductive agent including single-walled carbon nanotubes (SWCNTs); and a binder. A lithium secondary battery includes the positive electrode.
    Type: Application
    Filed: December 24, 2021
    Publication date: December 14, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Hyeong II Kim, Hak Yoon Kim, So Ra Baek, Hyuck Hur, Dong Hwi Kim, Seul Ki Chae, Wang Mo Jung, Dong Hun Lee
  • Patent number: 11837719
    Abstract: A method for preparing a lithium cobalt-based positive electrode active material and a positive electrode active material prepared by the method are provided. The method includes dry-mixing and then heat treating a lithium cobalt oxide particle represented by Formula 1 and one or more lithium metal oxide particle selected from the group consisting of lithium aluminum oxide, lithium zirconium oxide, and lithium titanium oxide.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: December 5, 2023
    Inventors: Chi Ho Jo, Min Kyu You, Sung Bin Park, Hyuck Hur, Jin Tae Hwang, Wang Mo Jung
  • Publication number: 20230387399
    Abstract: A method of preparing a lithium secondary battery includes: (1) mixing a small particle lithium composite transition metal oxide having an average particle diameter (D50) of less than 7 ?m with a boron-containing raw material and performing a heat treatment, mixing a large particle lithium composite transition metal oxide having an average particle diameter (D50) of 8 ?m or more with a cobalt-containing raw material and a boron-containing raw material and performing a heat treatment, mixing the first positive electrode active material and the second positive electrode active material to prepare a positive electrode material having a bimodal particle diameter distribution, preparing a positive electrode by coating the positive electrode material on a positive electrode collector, and assembling the positive electrode, a negative electrode including a silicon-based negative electrode active material, and a separator.
    Type: Application
    Filed: October 22, 2021
    Publication date: November 30, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: So Ra Baek, Hak Yoon Kim, Hyuck Hur, Dong Hwi Kim, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung, Dong Hun Lee
  • Publication number: 20230155127
    Abstract: A positive electrode and a lithium secondary including the same is disclosed herein. In some embodiments, the positive electrode includes a positive electrode current collector, a first positive electrode active material layer and a second positive electrode active material layer sequentially stacked on the positive electrode current collector, wherein the first positive electrode active material layer and the second positive electrode active material layer include a bimodal positive active material, the first positive electrode active material layer includes small-diameter particles in the form of single particles, and the second positive electrode active material layer includes small-diameter particles in the form of secondary particles. The positive electrode has improved capacity, efficiency, lifespan, output properties, and thermal stability.
    Type: Application
    Filed: January 28, 2022
    Publication date: May 18, 2023
    Applicant: LG Energy Solution, Ltd.
    Inventors: Dong Hwi Kim, Hak Yoon Kim, So Ra Baek, Hyuck Hur, Hyeong Il Kim, Seul Ki Chae, Wang Mo Jung, Dong Hun Lee
  • Patent number: 11611076
    Abstract: The present invention provides a positive electrode active material precursor for a secondary battery which includes primary particles of Co3O4 or CoOOH, wherein the primary particle contains a doping element in an amount of 3,000 ppm or more, and has an average particle diameter (D50) of 15 ?m or more, and a positive electrode active material for a secondary battery which includes particles of a lithium cobalt-based oxide, wherein the primary particle contains a doping element in an amount of 2,500 ppm or more, and has an average particle diameter (D50) of 15 ?m or more.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: March 21, 2023
    Inventors: Min Kyu You, Chi Ho Jo, Sung Bin Park, Hyuck Hur, Jin Tae Hwang, Wang Mo Jung
  • Patent number: 11611078
    Abstract: The present invention provides a positive active material for a rechargeable lithium battery, the active material including a dopant and having a crystalline structure in which metal oxide layers (MO layers) including metals and oxygen and reversible lithium layers are repeatedly stacked, wherein in a lattice configured by oxygen atoms of the MO layers adjacent to each other, the dopant time of charge, thereby forming a lithium trap and/or lithium dumbbell structure.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: March 21, 2023
    Inventors: Sung Bin Park, Young Uk Park, Ji Young Park, Bo Ram Lee, Chi Ho Jo, Young Cheol Choi, Hyuck Hur, Wang Mo Jung