Patents by Inventor Hyun-deok Yang

Hyun-deok Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8759182
    Abstract: A semiconductor device having an improved negative bias temperature instability lifetime characteristic is manufactured by forming a first insulating layer on a substrate, performing a first nitridation on the first insulating layer to form a second insulating layer, and sequentially performing a first and second anneal on the second insulating layer to form a third insulating layer, wherein the second anneal is performed at a higher temperature and with a different gas than the first anneal. A second nitridation is performed on the third insulating layer to form a fourth insulating layer, and a sequential third and fourth anneal on the fourth insulating layer forms a fifth insulating layer. The third anneal is performed at a higher temperature than the first anneal, and the fourth anneal is performed at a higher temperature than the second anneal and with a different gas than the third anneal.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: June 24, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Jun Sim, Jae-Young Park, Hyun-Seung Kim, Sang-Bom Kang, Sun-Ghil Lee, Hyun-Deok Yang, Kang-Hun Moon, Han-Ki Lee, Sang-Mi Choi
  • Publication number: 20120299154
    Abstract: A semiconductor device having an improved negative bias temperature instability lifetime characteristic is manufactured by forming a first insulating layer on a substrate, performing a first nitridation on the first insulating layer to form a second insulating layer, and sequentially performing a first and second anneal on the second insulating layer to form a third insulating layer, wherein the second anneal is performed at a higher temperature and with a different gas than the first anneal. A second nitridation is performed on the third insulating layer to form a fourth insulating layer, and a sequential third and fourth anneal on the fourth insulating layer forms a fifth insulating layer. The third anneal is performed at a higher temperature than the first anneal, and the fourth anneal is performed at a higher temperature than the second anneal and with a different gas than the third anneal.
    Type: Application
    Filed: April 30, 2012
    Publication date: November 29, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun-Jun Sim, Jae-Young Park, Hyun-Seung Kim, Sang-Bom Kang, Sun-Ghil Lee, Hyun-Deok Yang, Kang-Hun Moon, Han-Ki Lee, Sang-Mi Choi
  • Patent number: 8232613
    Abstract: Example embodiments relate to a method of forming a germanium (Ge) silicide layer, a semiconductor device including the Ge silicide layer, and a method of manufacturing the semiconductor device. A method of forming a Ge silicide layer according to example embodiments may include forming a metal layer including vanadium (V) on a silicon germanium (SiGe) layer. The metal layer may have a multiple-layer structure and may further include at least one of platinum (Pt) and nickel (Ni). The metal layer may be annealed to form the germanium silicide layer. The annealing may be performed using a laser spike annealing (LSA) method.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: July 31, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-wook Moon, Hyun-deok Yang, Joong S. Jeon, Hwa-sung Rhee, Nae-in Lee, Weiwei Chen
  • Patent number: 8193030
    Abstract: Nonvolatile memory devices may be fabricated to include a switching device on a substrate and/or a storage node electrically connected to the switching device. A storage node may include a lower metal layer electrically connected to the switching device, a first insulating layer, a middle metal layer, a second insulating layer, an upper metal layer, a carbon nanotube layer, and/or a passivation layer stacked on the lower metal layer.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: June 5, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-wook Moon, Joong S. Jeon, El Mostafa Bourim, Hyun-deok Yang
  • Publication number: 20110117735
    Abstract: Nonvolatile memory devices may be fabricated to include a switching device on a substrate and/or a storage node electrically connected to the switching device. A storage node may include a lower metal layer electrically connected to the switching device, a first insulating layer, a middle metal layer, a second insulating layer, an upper metal layer, a carbon nanotube layer, and/or a passivation layer stacked on the lower metal layer.
    Type: Application
    Filed: January 3, 2011
    Publication date: May 19, 2011
    Inventors: Chang-wook Moon, Joong S. Jeon, El Mostafa Bourim, Hyun-deok Yang
  • Publication number: 20110049587
    Abstract: Example embodiments relate to a method of forming a germanium (Ge) silicide layer, a semiconductor device including the Ge silicide layer, and a method of manufacturing the semiconductor device. A method of forming a Ge silicide layer according to example embodiments may include forming a metal layer including vanadium (V) on a silicon germanium (SiGe) layer. The metal layer may have a multiple-layer structure and may further include at least one of platinum (Pt) and nickel (Ni). The metal layer may be annealed to form the germanium silicide layer. The annealing may be performed using a laser spike annealing (LSA) method.
    Type: Application
    Filed: November 3, 2010
    Publication date: March 3, 2011
    Inventors: Chang-wook Moon, Hyun-deok Yang, Joong S. Jeon, Hwa-sung Rhee, Nae-in Lee, Weiwei Chen
  • Patent number: 7884410
    Abstract: Example embodiments may provide nonvolatile memory devices and example methods of fabricating nonvolatile memory devices. Example embodiment nonvolatile memory devices may include a switching device on a substrate and/or a storage node electrically connected to the switching device. A storage node may include a lower metal layer electrically connected to the switching device, a first insulating layer, a middle metal layer, a second insulating layer, an upper metal layer, a carbon nanotube layer, and/or a passivation layer stacked on the lower metal layer.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: February 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-wook Moon, Joong S. Jeon, El Mostafa Bourim, Hyun-deok Yang
  • Patent number: 7863142
    Abstract: Example embodiments relate to a method of forming a germanium (Ge) silicide layer, a semiconductor device including the Ge silicide layer, and a method of manufacturing the semiconductor device. A method of forming a Ge silicide layer according to example embodiments may include forming a metal layer including vanadium (V) on a silicon germanium (SiGe) layer. The metal layer may have a multiple-layer structure and may further include at least one of platinum (Pt) and nickel (Ni). The metal layer may be annealed to form the germanium silicide layer. The annealing may be performed using a laser spike annealing (LSA) method.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: January 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-wook Moon, Hyun-deok Yang, Joong S. Jeon, Hwa-sung Rhee, Nae-in Lee, Weiwei Chen
  • Publication number: 20090146183
    Abstract: Example embodiments relate to a method of forming a germanium (Ge) silicide layer, a semiconductor device including the Ge silicide layer, and a method of manufacturing the semiconductor device. A method of forming a Ge silicide layer according to example embodiments may include forming a metal layer including vanadium (V) on a silicon germanium (SiGe) layer. The metal layer may have a multiple-layer structure and may further include at least one of platinum (Pt) and nickel (Ni). The metal layer may be annealed to form the germanium silicide layer. The annealing may be performed using a laser spike annealing (LSA) method.
    Type: Application
    Filed: April 4, 2008
    Publication date: June 11, 2009
    Inventors: Chang-wook Moon, Hyun-deok Yang, Joong S. Jeon, Hwa-sung Rhee, Nae-in Lee, Weiwei Chen
  • Publication number: 20080191261
    Abstract: Example embodiments may provide nonvolatile memory devices and example methods of fabricating nonvolatile memory devices. Example embodiment nonvolatile memory devices may include a switching device on a substrate and/or a storage node electrically connected to the switching device. A storage node may include a lower metal layer electrically connected to the switching device, a first insulating layer, a middle metal layer, a second insulating layer, an upper metal layer, a carbon nanotube layer, and/or a passivation layer stacked on the lower metal layer.
    Type: Application
    Filed: October 31, 2007
    Publication date: August 14, 2008
    Inventors: Chang-wook Moon, Joong S. Jeon, El Mostafa Bourim, Hyun-deok Yang
  • Publication number: 20080164533
    Abstract: Example embodiments relate to a method of manufacturing a germanosilicide and a semiconductor device having the germanosilicide. A method according to example embodiments may include providing a substrate having at least a portion formed of silicon germanium. A metal layer may be formed on the silicon germanium. A thermal process may be performed on the substrate at a relatively high pressure to form the germanosilicide.
    Type: Application
    Filed: December 13, 2007
    Publication date: July 10, 2008
    Inventors: Hyun-Deok Yang, Chang-wook Moon, Joong S. Jeon