Patents by Inventor Hyun-Kuk Noh

Hyun-Kuk Noh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10541408
    Abstract: Provided is a composite electrode for a lithium secondary battery for improving output and a lithium secondary battery including the composite electrode, in which, in a composite electrode having two or more active materials mixed therein, an active material having a small particle size is included in the composite electrode by being coagulated and secondarily granulated so as to allow mixed active material particles to have a uniform size, and thus, electrical conductivity is improved to have high output characteristics.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: January 21, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Sun Jung Hwang, Sin Kyu Kim, Yong Tae Lee, Hyun Kuk Noh, Geun Chang Chung, Keun Wan An
  • Patent number: 9911977
    Abstract: Disclosed herein is a cathode active material including a lithium manganese oxide, in which the lithium manganese oxide has a spinel structure with a predetermined constitutional composition represented by Formula 1 described in the detailed description, wherein a conductive material is applied to the surface of lithium manganese oxide particles, so as to exhibit charge-discharge properties in the range of 2.5 to 3.5V as well as in the 4V region.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: March 6, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Hyun Kuk Noh, Sin Kyu Kim, Geun-Chang Chung, Song-Taek Oh, Sanguck Lee, Jong Chan Kim
  • Patent number: 9865874
    Abstract: Disclosed is a hydrothermal synthesis device for continuously preparing an inorganic slurry using a hydrothermal method. The hydrothermal synthesis device includes a mixer to mix at least one precursor solution for preparing an inorganic material, injected via at least one supply tube, to prepare an intermediate slurry, a connection tube provided at a side of the mixer, continuously discharging the prepared intermediate slurry to a reactor, and having an inner surface contacting a precursor solution mixture on which abrasive polishing has been performed, and the reactor performing hydrothermal reaction of the intermediate slurry supplied from the connection tube by receiving a liquid stream heated to supercritical or subcritical conditions using a heat exchanger and connected to the connection tube into which the intermediate slurry prepared from the mixer is introduced and to at least one injection tube into which the heated liquid stream is injected.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: January 9, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Hyun Kuk Noh, Ji Hoon Ryu, Wang Mo Jung, Hong Kyu Park, Sang Seung Oh, Chi Ho Jo
  • Patent number: 9843035
    Abstract: Disclosed is a hydrothermal synthesis device for continuously preparing an inorganic slurry using a hydrothermal method. The hydrothermal synthesis device includes a mixer to mix at least one precursor solution for preparing an inorganic material, injected via at least one supply tube, to prepare an intermediate slurry, a connection tube provided at a side of the mixer, continuously discharging the prepared intermediate slurry to a reactor, and having a hydrophobic coating on an inner surface of a portion thereof adjacent to the reactor, and the reactor performing hydrothermal reaction of the intermediate slurry supplied from the connection tube by receiving a liquid stream heated to supercritical or subcritical conditions using a heat exchanger and connected to the connection tube into which the intermediate slurry prepared from the mixer is introduced and to at least one injection tube into which the heated liquid stream is injected.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: December 12, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Hyun Kuk Noh, Hong Kyu Park, Chi Ho Jo, Ji Hoon Ryu, Sang Seung Oh, Wang Mo Jung
  • Patent number: 9812707
    Abstract: Disclosed is lithium iron phosphate having an olivine crystal structure, wherein the lithium iron phosphate has a composition represented by the following Formula 1 and carbon (C) is coated on the particle surface of the lithium iron phosphate containing a predetermined amount of sulfur (S). Li1+aFe1?xMx(PO4?b)Xb??(1) (wherein M, X, a, x, and b are the same as defined in the specification).
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: November 7, 2017
    Assignee: LG CHEM, LTD.
    Inventors: Hyun Kuk Noh, Hong Kyu Park, Cheol-Hee Park, Su-min Park, JiEun Lee
  • Patent number: 9722246
    Abstract: Disclosed is a method of preparing inorganic particles using a hydrothermal synthesis device, including introducing a precursor liquid or slurry stream including a reaction precursor for preparation of an inorganic material into a hydrothermal synthesis reactor, introducing a supercritical liquid stream including water into the hydrothermal synthesis reactor, preparing an inorganic slurry by hydrothermal reaction in the hydrothermal synthesis reactor and discharging the inorganic slurry therefrom, and filtering the discharged inorganic slurry, wherein the precursor liquid or slurry stream includes an NH3 source at a high temperature of the supercritical liquid stream and thus clogging of the stream in the hydrothermal synthesis reactor is inhibited by pH changes in the hydrothermal reaction.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: August 1, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Hyun Kuk Noh, Hong Kyu Park, Ji Hoon Ryu, Wang Mo Jung, Sang Seung Oh, Chi Ho Jo
  • Patent number: 9214700
    Abstract: Disclosed is lithium iron phosphate having an olivine crystal structure, wherein the lithium iron phosphate has a composition represented by the following Formula 1, a sulfur compound with a sulfide bond is contained, as an impurity, in the lithium iron phosphate particles, and carbon (C) is coated on particle surfaces of the lithium iron phosphate: Li1+aFe1-xMx(PO4-b)Xb??(1) (wherein M, X, a, x, and b are the same as defined in the specification).
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: December 15, 2015
    Assignee: LG CHEM, LTD.
    Inventors: Hyun Kuk Noh, Hong Kyu Park, Cheol-Hee Park, Su-Min Park, JiEun Lee
  • Publication number: 20150318548
    Abstract: Disclosed is a method of preparing inorganic particles using a hydrothermal synthesis device, including introducing a precursor liquid or slurry stream including a reaction precursor for preparation of an inorganic material into a hydrothermal synthesis reactor, introducing a supercritical liquid stream including water into the hydrothermal synthesis reactor, preparing an inorganic slurry by hydrothermal reaction in the hydrothermal synthesis reactor and discharging the inorganic slurry therefrom, and filtering the discharged inorganic slurry, wherein the precursor liquid or slurry stream includes an NH3 source at a high temperature of the supercritical liquid stream and thus clogging of the stream in the hydrothermal synthesis reactor is inhibited by pH changes in the hydrothermal reaction.
    Type: Application
    Filed: November 26, 2013
    Publication date: November 5, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Hyun Kuk Noh, Hong Kyu Park, Ji Hoon Ryu, Wang Mo Jung, Sang Seung Oh, Chi Ho Jo
  • Publication number: 20150280214
    Abstract: Disclosed is a hydrothermal synthesis device for continuously preparing an inorganic slurry using a hydrothermal method. The hydrothermal synthesis device includes a mixer to mix at least one precursor solution for preparing an inorganic material, injected via at least one supply tube, to prepare an intermediate slurry, a connection tube provided at a side of the mixer, continuously discharging the prepared intermediate slurry to a reactor, and having a hydrophobic coating on an inner surface of a portion thereof adjacent to the reactor, and the reactor performing hydrothermal reaction of the intermediate slurry supplied from the connection tube by receiving a liquid stream heated to supercritical or subcritical conditions using a heat exchanger and connected to the connection tube into which the intermediate slurry prepared from the mixer is introduced and to at least one injection tube into which the heated liquid stream is injected.
    Type: Application
    Filed: November 27, 2013
    Publication date: October 1, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Hyun Kuk Noh, Hong Kyu Park, Chi Ho Jo, Ji Hoon Ryu, Sang Seung Oh, Wang Mo Jung
  • Publication number: 20150270549
    Abstract: Disclosed is a hydrothermal synthesis device for continuously preparing an inorganic slurry using a hydrothermal method. The hydrothermal synthesis device includes a mixer to mix at least one precursor solution for preparing an inorganic material, injected via at least one supply tube, to prepare an intermediate slurry, a connection tube provided at a side of the mixer, continuously discharging the prepared intermediate slurry to a reactor, and having an inner surface contacting a precursor solution mixture on which abrasive polishing has been performed, and the reactor performing hydrothermal reaction of the intermediate slurry supplied from the connection tube by receiving a liquid stream heated to supercritical or subcritical conditions using a heat exchanger and connected to the connection tube into which the intermediate slurry prepared from the mixer is introduced and to at least one injection tube into which the heated liquid stream is injected.
    Type: Application
    Filed: November 27, 2013
    Publication date: September 24, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Hyun Kuk Noh, Ji Hoon Ryu, Wang Mo Jung, Hong Kyu Park, Sang Seung Oh, Chi Ho Jo
  • Patent number: 8906552
    Abstract: Disclosed is lithium iron phosphate having an olivine crystal structure wherein carbon (C) is coated on particle surfaces of the lithium iron phosphate, wherein, when a powder of the lithium iron phosphate is dispersed in water, water is removed from the resulting dispersion and the resulting lithium iron phosphate residue is quantitatively analyzed, a ratio of the carbon-released lithium iron phosphate with respect to the total weight of the carbon-coated lithium iron phosphate is 0.005% by weight or less. Advantageously, the olivine-type lithium iron phosphate is not readily separated through uniform thin film coating on the surface of the lithium iron phosphate and exhibits superior conductivity and density, since carbon is coated on particle surfaces of lithium iron phosphate in a state in which the amount of carbon released in water is considerably small.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 9, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hyun Kuk Noh, Hong Kyu Park, Su-min Park, Ji Eun Lee, Cheol-Hee Park
  • Publication number: 20140220445
    Abstract: Disclosed is lithium iron phosphate having an olivine crystal structure, wherein the lithium iron phosphate has a composition represented by the following Formula 1 and carbon (C) is coated on the particle surface of the lithium iron phosphate containing a predetermined amount of sulfur (S). Li1+aFe1?xMx(PO4?b)Xb??(1) (wherein M, X, a, x, and b are the same as defined in the specification).
    Type: Application
    Filed: April 11, 2014
    Publication date: August 7, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Hyun Kuk NOH, Hong Kyu PARK, Cheol-Hee PARK, Su-min PARK, JiEun LEE
  • Patent number: 8734676
    Abstract: Disclosed is lithium iron phosphate having an olivine crystal structure, wherein the lithium iron phosphate has a composition represented by the following Formula 1 and carbon (C) is coated on the particle surface of the lithium iron phosphate containing a predetermined amount of sulfur (S). Li1+aFe1?xMx(PO4?b)Xb??(1) (wherein M, X, a, x, and b are the same as defined in the specification).
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: May 27, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hyun Kuk Noh, Hong Kyu Park, Cheol-Hee Park, Su-Min Park, JiEun Lee
  • Publication number: 20130280610
    Abstract: Provided is a composite electrode for a lithium secondary battery for improving output and a lithium secondary battery including the composite electrode, in which, in a composite electrode having two or more active materials mixed therein, an active material having a small particle size is included in the composite electrode by being coagulated and secondarily granulated so as to allow mixed active material particles to have a uniform size, and thus, electrical conductivity is improved to have high output characteristics.
    Type: Application
    Filed: January 10, 2013
    Publication date: October 24, 2013
    Applicant: LG CHEM, LTD.
    Inventors: Sun Jung Hwang, Sin Kyu Kim, Yong Tae Lee, Hyun Kuk Noh, Geun Chang Chung, Keun Wan An
  • Publication number: 20130022872
    Abstract: Disclosed herein is a cathode active material including a lithium manganese oxide, in which the lithium manganese oxide has a spinel structure with a predetermined constitutional composition represented by Formula 1 described in the detailed description, wherein a conductive material is applied to the surface of lithium manganese oxide particles, so as to exhibit charge-discharge properties in the range of 2.5 to 3.5V as well as in the 4V region.
    Type: Application
    Filed: February 16, 2012
    Publication date: January 24, 2013
    Applicant: LG CHEM, LTD.
    Inventors: Hyun Kuk Noh, Sin Kyu Kim, Geun-Chang Chung, Song-Taek Oh, Sanguck Lee, Jong Chan Kim
  • Patent number: 8114805
    Abstract: The present invention relates to a method of preparing a heteropoly acid catalyst used for the production of methacrylic acid by gas phase oxidation of methacrolein, more precisely a method of preparing a heteropoly acid catalyst comprising the steps of preparing a slurry by adding metal precursors and ammonium salt to protonic acid Keggin-type heteropoly acid aqueous solution and stirring thereof; and drying, molding and firing the slurry to give a catalyst. The present invention provides a method of preparing a heteropoly acid catalyst exhibiting high methacrolein conversion rate and methacrylic acid selectivity without pre-firing process by using high purity protonic acid Keggin-type heteropoly acid and ammonium salt.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: February 14, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Hyun-Kuk Noh, Hyun-jong Shin, Won-ho Lee, Byung-yul Choi, Gyo-hyun Hwang, Ju-yeon Park, Duk-ki Kim, Young-hyun Choe, Min-ho Kil, Min-suk Kim, Young-jin Cho, Sung-chul Lim
  • Patent number: 8053386
    Abstract: The present invention relates to a heteropoly acid catalyst which is used for the production of methacrylic acid by gas phase oxidation of methacrolein and a preparing method thereof. The present invention, thereby, provides a novel heteropoly acid catalyst having excellent methacrolein conversion rate, methacrylic acid selectivity and yield.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: November 8, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Gyo-hyun Hwang, Min-ho Kil, Hyun-kuk Noh, Won-ho Lee, Min-suk Kim
  • Publication number: 20100184591
    Abstract: The present invention relates to a method of preparing a heteropoly acid catalyst used for the production of methacrylic acid by gas phase oxidation of methacrolein, more precisely a method of preparing a heteropoly acid catalyst comprising the steps of preparing a slurry by adding metal precursors and ammonium salt to protonic acid Keggin-type heteropoly acid aqueous solution and stirring thereof; and drying, molding and firing the slurry to give a catalyst. The present invention provides a method of preparing a heteropoly acid catalyst exhibiting high methacrolein conversion rate and methacrylic acid selectivity without pre-firing process by using high purity protonic acid Keggin-type heteropoly acid and ammonium salt.
    Type: Application
    Filed: June 13, 2008
    Publication date: July 22, 2010
    Applicant: LG CHEM, LTD.
    Inventors: Hyun-Kuk Noh, Hyun-jong Shin, Won-ho Lee, Byung-yul Choi, Gyo-hyun Hwang, Ju-yeon Park, Duk-ki Kim, Young-hyun Choe, Min-ho Kil, Min-suk Kim, Young-jin Cho, Sung-chul Lim
  • Patent number: 7687629
    Abstract: The present invention relates to a process for the preparation of 4-aminomethyl-3-alkoxyiminopyrrolidine methanesulfonate, a key intermediate of quinolone antibiotics. According to the process of the present invention, the total number of steps has been shortened to 2-3 steps, the solid separation is not required, and the use of costly chemicals, particularly (BOC)2O (t-butoxycarbonyl anhydride), several organic solvents and reactants, is eliminated.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: March 30, 2010
    Assignee: LG Life Sciences Ltd.
    Inventors: Gyo-Hyun Hwang, Yeong-Dae Kim, Hyun Nam, Jay-Hyok Chang, Hyun-Ik Shin, Young-Keun Kim, Kyung Hee Lee, Jae Sung Lee, Hyun-Kuk Noh
  • Publication number: 20100069230
    Abstract: The present invention relates to a heteropoly acid catalyst which is used for the production of methacrylic acid by gas phase oxidation of methacrolein and a preparing method thereof. The present invention, thereby, provides a novel heteropoly acid catalyst having excellent methacrolein conversion rate, methacrylic acid selectivity and yield.
    Type: Application
    Filed: November 29, 2007
    Publication date: March 18, 2010
    Applicant: LG CHEM, LTD.
    Inventors: Gyo-hyun Hwang, Min-Ho Kim, Hyun-kuk Noh, Won-ho Lee, Min-suk Kim