Patents by Inventor Hyun-Seo Park

Hyun-Seo Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200152996
    Abstract: Disclosed is a method for producing an electrode for a high temperature polymer electrolyte membrane fuel cell. According to the method, a catalyst slurry containing a uniformly dispersed binder is used to produce an electrode. Also disclosed are a membrane electrode assembly using the electrode and a high temperature polymer electrolyte membrane fuel cell including the membrane electrode assembly. Uniform distribution of the binder leads to improvements in the performance and reproducibility of the fuel cell.
    Type: Application
    Filed: April 17, 2019
    Publication date: May 14, 2020
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyoung-Juhn KIM, Min Jae LEE, Ju Sung LEE, Katie Heeyum LIM, So Young LEE, Hee-Young PARK, Hyun Seo PARK, Jin Young KIM, Sung Jong YOO, Jong Hyun JANG
  • Publication number: 20200131657
    Abstract: The present disclosure relates to an oxygen electrode comprising a dual plating catalyst, a water electrolysis device and a regenerative fuel cell comprising the same, and a method for preparing the oxygen electrode.
    Type: Application
    Filed: October 2, 2019
    Publication date: April 30, 2020
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyun Seo PARK, Jong Hyun JANG, Hee-Young PARK, Jin Young KIM, So Young LEE, Sung Jong YOO, Dirk Henkensmeier, Hyoung-Juhn KIM, Ahyoun LIM, Junyoung KIM, Hye Jin LEE
  • Publication number: 20200086302
    Abstract: The present disclosure relates to a catalyst for electrochemical ammonia synthesis and a method for producing the same. The catalyst has an ammonia synthesis activity up to several times to several tens of times of the activity of the existing single metal or metal oxide catalysts. Thus, when using the catalyst, it is possible to provide a method for electrochemical ammonia synthesis having an improved ammonia production yield and rate.
    Type: Application
    Filed: December 11, 2018
    Publication date: March 19, 2020
    Applicant: Korea Institute of Science and Technology
    Inventors: Hyun Seo Park, Kahyun Hur, Min-Soek Kim, Jimin Kong, Jong Hyun Jang, Chang Won Yoon, Hyung Chul Ham, Suk Woo Nam, Jonghee Han, Ara Jo
  • Patent number: 10483552
    Abstract: A catalyst containing a carbon support and a core-shell nanoparticle supported on the carbon support, wherein a core of the core-shell nanoparticle is cobalt metal not containing a heterogeneous element and the shell contains carbon. The catalyst for an oxygen reduction reaction of the present disclosure is a catalyst in which the cobalt core-carbon shell nanoparticle is supported on the carbon support through ligand stabilization and heat treatment. The catalyst can be synthesized to have high dispersibility. In particular, it can be used as an electrode catalyst of a cathode to improve the oxygen reduction activity and durability of a fuel cell operating under an alkaline atmosphere.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: November 19, 2019
    Assignee: Korea Institute of Science and Technology
    Inventors: Sung Jong Yoo, Jue-hyuk Jang, So Young Lee, Jin Young Kim, Jong Hyun Jang, Hyoung-Juhn Kim, Namgee Jung, Hyun Seo Park
  • Publication number: 20190341624
    Abstract: The present disclosure relates to a method for preparing a carbon-supported platinum-transition metal alloy nanoparticle catalyst. More particularly, the present disclosure provides a method for preparing a carbon-supported platinum-transition metal alloy nanoparticle catalyst using a stabilizer, the method including the steps of: (a) mixing a platinum precursor, a transition metal precursor, carbon, stabilizer and a reducing agent solution, and carrying out washing and drying to obtain carbon-supported platinum-transition metal alloy nanoparticles; (b) mixing the carbon-supported platinum-transition metal alloy nanoparticles with an acetic acid solution, and carrying out washing and drying to obtain acetic acid-treated nanoparticles; and (c) heat treating the acetic acid-treated nanoparticles.
    Type: Application
    Filed: February 6, 2019
    Publication date: November 7, 2019
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jong Hyun JANG, Hee-Young PARK, Jea-woo JUNG, Hyoung-Juhn KIM, Dirk HENKENSMEIER, Sung Jong YOO, Jin Young KIM, So Young LEE, Hyun Seo PARK
  • Patent number: 10458028
    Abstract: An electrochemical method for ammonia synthesis including the steps of: preparing a single-crystalline metal thin film; and synthesizing ammonia by using the single-crystalline metal thin film electrode. More particularly, it relates to improvement of the production yield and synthesis rate of ammonia trough the method for preparing ammonia by using an electrochemical reactor which includes a cathode including a single-crystalline metal thin film on the surface thereof, an anode and an electrolyte, wherein the method includes the steps of: supplying nitrogen to the cathode; supplying aqueous electrolyte solution to the anode; and applying an electric voltage between the cathode and the anode.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: October 29, 2019
    Assignee: Korea Institute of Science and Technology
    Inventors: Jong Hyuk Park, Hyun Seo Park, Jimin Kong
  • Patent number: 10461350
    Abstract: Disclosed is an electrochemical reaction cell enhancing a reduction reaction. The electrochemical reaction cell enhancing a reduction reaction comprises: a membrane electrode assembly including a polymer electrolytic membrane, a cathode formed by sequentially stacking a first gas diffusion layer and a first catalyst layer on one surface of the electrolytic membrane, and an anode formed by sequentially stacking a second catalyst layer and a second gas diffusion layer on the other surface of the electrolytic membrane; a first distribution plate stacked on the first catalyst layer to supply a reaction gas and a cathode electrolytic solution dissolved with the reaction gas to the first catalyst layer along separate channels; and a second distribution plate stacked on the second gas diffusion layer to supply an anode electrolytic solution to the second gas diffusion layer.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: October 29, 2019
    Assignee: Korea Institute of Science and Technology
    Inventors: Jong Hyun Jang, Hyoung-Juhn Kim, Sung Jong Yoo, Jin Young Kim, Hyung Chul Ham, Dirk Henkensmeier, So Young Lee, Hyun Seo Park, Youngseung Na, Min Gwan Ha
  • Patent number: 10435296
    Abstract: Provided is a liquid hydrogen storage material including 1,1?-biphenyl and 1,1?-methylenedibenzene, the liquid hydrogen storage material including the corresponding 1,1?-biphenyl and 1,1?-methylenedibenzene at a weight ratio of 1:1 to 1:2.5. The corresponding liquid hydrogen storage material has excellent hydrogen storage capacity value by including materials having high hydrogen storage capacity, and is supplied in a liquid state, and as a result, it is possible to minimize initial investment costs and the like required when the corresponding liquid hydrogen storage material is used as a hydrogen storage material in a variety of industries.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: October 8, 2019
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Chang Won Yoon, Dajung Han, Yeong Cheon Kim, Hyun Seo Park, Hyung Chul Ham, Sung Pil Yoon, Jonghee Han, Tae Hoon Lim, Suk Woo Nam
  • Patent number: 10435802
    Abstract: Provided are a cathode catalyst for water electrolysis devices and a method for preparing the same. More specifically, provided are a cathode catalyst for water electrolysis devices that exhibits both high activity and high electrical conductivity, compared to conventional transition metal phosphide catalysts, and a method for preparing the same.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: October 8, 2019
    Assignee: Korea Institute of Science and Technology
    Inventors: Sung Jong Yoo, Injoon Jang, So Young Lee, Jin Young Kim, Jong Hyun Jang, Hyoung-Juhn Kim, Jonghee Han, Hyun Seo Park
  • Patent number: 10396383
    Abstract: A membrane electrode assembly includes a cation exchange membrane electrode assembly and an anion exchange membrane electrode assembly. The cation exchange membrane includes a cation exchange membrane, a first cathode electrode disposed on the cation exchange membrane, and a first anode electrode disposed under the cation exchange membrane. The anion exchange membrane electrode assembly includes an anion exchange membrane, a second cathode electrode disposed on the anion exchange membrane, and a second anode electrode disposed under the anion exchange membrane. The cation exchange membrane and the anion exchange membrane partially contact each other, and the first cathode electrode, the first anode electrode, the second cathode electrode, and the second anode electrode do not contact one another.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: August 27, 2019
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyoung-Juhn Kim, So Young Lee, Jieon Chae, Jong Hyun Jang, Sung Jong Yoo, Jin Young Kim, Hyun Seo Park, Dirk Henkensmeier
  • Publication number: 20190261406
    Abstract: An operation method of a terminal in a communication system includes receiving bandwidth part (BWP) change information from a base station in a BWP i; changing an operation BWP of the terminal from the BWP i to a BWP j even when a transmission and reception procedure of first data in the BWP i is not completed at a BWP changing point indicated by the BWP change information; and performing a data transmission and reception procedure of second data in the BWP j, wherein the BWP i and the BWP j are different BWPs, and i and j are different integers.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 22, 2019
    Inventors: Eunkyung KIM, Tae Joong KIM, Hyun Seo PARK, An Seok LEE, Yu Ro LEE, Hyun LEE
  • Patent number: 10367206
    Abstract: A method for preparing a metal catalyst supported on a porous carbon support using a plant, including: (a) a step of preparing a plant; (b) a step of preparing a metal precursor-absorbed plant by absorbing a metal precursor into the plant; (c) a step of preparing a catalyst precursor by drying the metal precursor-absorbed plant; (d) a step of preparing a char by charring the catalyst precursor; and (e) a step of preparing a metal catalyst supported on a porous carbon support by treating the char with an acid. The method for preparing a metal catalyst supported on a porous carbon support of the present disclosure, whereby a plant itself is charred, is environment-friendly and allows for convenient large-scale synthesis. The metal catalyst supported on a porous carbon support prepared thereby can be used as electrode materials of various energy devices, particularly as an electrode catalyst of a fuel cell.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: July 30, 2019
    Assignee: Korea Institute of Science and Technology
    Inventors: Sung Jong Yoo, Dong Wook Lee, So Young Lee, Jin Young Kim, Jong Hyun Jang, Hyoung-Juhn Kim, Hyun Seo Park, Gil-Pyo Kim
  • Publication number: 20190223057
    Abstract: An operation method of a terminal in a communication system includes transmitting a measurement report message of each of one or more neighbor base stations to a source base station, the one or more neighbor base stations satisfying a handover (HO) preparation event; receiving, from the source base station, a conditional HO command message of each of at least one of neighbor base stations among the one or more neighbor base stations; determining a target base station based on priority of a neighbor base station which satisfies a HO execution event among the at least one of neighbor base stations; and performing a handover with the target base station.
    Type: Application
    Filed: January 10, 2019
    Publication date: July 18, 2019
    Inventors: Hyun Seo PARK, Eun Kyung KIM, Tae Joong KIM, An Seok LEE, Yu Ro LEE, Hyun LEE, Heesoo LEE
  • Publication number: 20190165916
    Abstract: An operation method of a terminal in a non-orthogonal multiple access (NOMA) based communication system includes receiving information on a NOMA resource sequence allocated by a base station from the base station; and transmitting data to the base station by using a NOMA resource indicated by the information on the NOMA resource sequence in each data symbol or each data symbol group. Also, the NOMA resource sequence may indicate at least one NOMA resource in a NOMA resource set.
    Type: Application
    Filed: November 29, 2018
    Publication date: May 30, 2019
    Inventors: Heesoo LEE, Eun Kyung KIM, Tae Joong KIM, Hyun Seo PARK, An Seok LEE, Yu Ro LEE, Hyun LEE
  • Publication number: 20190161868
    Abstract: The present disclosure relates to an IrO2 electrodeposited porous titanium composite layer of a polymer electrolyte membrane water electrolysis apparatus serving as both a diffusion layer and an oxygen electrode, the apparatus including: a porous titanium (Ti) layer; and an electrodeposited iridium oxide (IrO2) layer on the porous Ti layer. The IrO2 layer may be uniformly deposited on a porous Ti layer through an electrolysis process, and the electrodeposited IrO2 layer may play multiple roles as not only a catalyst layer toward oxygen evolution reaction (OER) on the surface of the Ti layer, but also a corrosion-protection layer which prevents an inner Ti layer from corrosion.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 30, 2019
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jong Hyun JANG, Seunghoe CHOE, Youngseung NA, Hye Jin LEE, Ahyoun LIM, Hyoung-Juhn KIM, Dirk HENKENSMEIER, Sung Jong YOO, Jin Young KIM, So Young LEE, Hyun Seo PARK
  • Publication number: 20190161872
    Abstract: An electrochemical method for ammonia synthesis including the steps of: preparing a single-crystalline metal thin film; and synthesizing ammonia by using the single-crystalline metal thin film electrode. More particularly, it relates to improvement of the production yield and synthesis rate of ammonia trough the method for preparing ammonia by using an electrochemical reactor which includes a cathode including a single-crystalline metal thin film on the surface thereof, an anode and an electrolyte, wherein the method includes the steps of: supplying nitrogen to the cathode; supplying aqueous electrolyte solution to the anode; and applying an electric voltage between the cathode and the anode.
    Type: Application
    Filed: December 19, 2017
    Publication date: May 30, 2019
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jong Hyuk PARK, Hyun Seo Park, Jimin Kong
  • Publication number: 20190159238
    Abstract: Disclosed are a method and an apparatus for providing low-latency services in a communication system. A downlink communication method may comprise receiving downlink control information (DCI) including resource allocation information from a base station through a control channel of a subframe receiving downlink data from the base station through a data channel of a subframe #n+k indicated by the resource allocation information included in the DCI; and transmitting a first hybrid automatic repeat request (HARM) response for the downlink data to the base station through a control channel of a subframe #n+k+l. Thus, the performance of the communication system can be improved.
    Type: Application
    Filed: November 20, 2018
    Publication date: May 23, 2019
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Eun Kyung KIM, Hyun Seo PARK, An Seok LEE, Yu Ro LEE, Hyun LEE, Hee Soo LEE
  • Publication number: 20190134620
    Abstract: Disclosed is a method for preparing a carbon-supported metal oxide and/or alloy nanoparticle catalyst. According to the method, a carbon-supported metal oxide and/or alloy nanoparticle catalyst is prepared by depositing metal oxide and/or alloy nanoparticles on a water-soluble support and dissolving the metal oxide and/or alloy nanoparticles deposited on the water-soluble support in an anhydrous polar solvent containing carbon dispersed therein to support the metal oxide and/or alloy nanoparticles on the carbon. The anhydrous polar solvent has much lower solubility for the water-soluble support than water and is used to dissolve the water-soluble support.
    Type: Application
    Filed: October 31, 2018
    Publication date: May 9, 2019
    Applicants: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY, GLOBAL FRONTIER CENTER FOR MULTISCALE ENERGY SYSTEMS
    Inventors: Sung Jong YOO, Injoon JANG, So Young LEE, Hyun Seo PARK, Jin Young KIM, Jong Hyun JANG, Hyoung-Juhn KIM
  • Patent number: 10276875
    Abstract: An anode for a molten carbonate fuel cell (MCFC) having improved creep property by adding CeO2 and/or Cr for imparting creep resistance to nickel-aluminum alloy and nickel as materials for an anode is provided. Improved sintering property, creep property and increased mechanical strength of a molten carbonate fuel cell may be obtained accordingly.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: April 30, 2019
    Assignee: Korean Institute of Science and Technology
    Inventors: Hyung Chul Ham, Min-Jae Lee, Chang-Whan Lee, Seong Cheol Jang, Sun-Hee Choi, Hyun Seo Park, Chang Won Yoon, Sung Pil Yoon, Jonghee Han, Suk Woo Nam, Tae Hoon Lim, Jin Young Kim
  • Publication number: 20190104452
    Abstract: A UE receives a handover command from a source eNB, and transmits a handover indication message to the source eNB while maintaining a connection to the source eNB. After transmitting the handover indication message, the UE disconnects the connection to the source eNB. Further, the UE accesses to a target eNB. A handover command includes information indicating timing advance if a handover without a random access procedure is configured.
    Type: Application
    Filed: April 19, 2017
    Publication date: April 4, 2019
    Inventor: Hyun Seo PARK