Patents by Inventor Hyung-Bin Ihm

Hyung-Bin Ihm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150362347
    Abstract: An apparatus and method are provided for compensating for a position error of a resolver that compensates for positions in the overall speed range using resolver position error measured at a specific speed by providing an angle tracking observer (ATO) for calculating angle information. The ATO compensates for the position errors in the overall speed range based on the position errors measured at the specific speed, to an inside of a resolver-digital converter. The method includes digitalizing detected position information of the motor rotor and receiving the digitalized position information from a resolver-digital converter to measure the position error. An electrical angular velocity of the position error is determined and the position error at the electrical angular velocity 0 is calculated and stored. The position error at a current electrical angular velocity is converted into and compensated for using the calculated position error based on the current electrical angular velocity.
    Type: Application
    Filed: December 15, 2014
    Publication date: December 17, 2015
    Inventors: Joo Young Park, Han Hee Park, Tae Il Yoo, Byung Hoon Yang, Chin Wook Paek, Hyung Bin Ihm
  • Publication number: 20150263657
    Abstract: The present invention relates to an anti-jerk control apparatus and method for an Hybrid Electric Vehicle (HEV). The anti-jerk control apparatus includes a model speed calculation unit for calculating a model speed of the motor in a state in which a vibration of a drive shaft is not considered. A vibration occurrence determination unit detects a speed vibration component while calculating a reference speed difference and an average speed difference from differences between the model speed and an actual speed of the motor, thus determining whether a vibration occurs on the drive shaft. A torque correction value calculation unit calculates a motor torque correction value for anti-jerk required to damp the vibration of the drive shaft, and controls torque of the motor if the vibration occurrence determination unit determines that the vibration occurs on the drive shaft.
    Type: Application
    Filed: March 20, 2015
    Publication date: September 17, 2015
    Inventors: Tae Wook Park, Joon Young Park, Tae Hoon Lee, Hyung Bin Ihm
  • Patent number: 9114724
    Abstract: A control method of a vehicle having a motor according to an exemplary embodiment of the present invention can include confirming that a speed of the motor is not 0 and an output torque thereof is 0 in a condition that the vehicle is being operated, confirming that a voltage of the motor converges to a regular value, and accumulating control data for the motor and processing the control data to calculate an offset value of a resolver. Accordingly, the control method of a vehicle effectively determines whether the offset of the resolver is to be compensated without affecting the drivability of the vehicle.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: August 25, 2015
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Tae Young Chung, Byunghoon Yang, Jooyoung Park, Hyung Bin Ihm
  • Patent number: 9008941
    Abstract: The present invention relates to an anti-jerk control apparatus and method for an Hybrid Electric Vehicle (HEV). The anti-jerk control apparatus includes a model speed calculation unit for calculating a model speed of the motor in a state in which a vibration of a drive shaft is not considered. A vibration occurrence determination unit detects a speed vibration component while calculating a reference speed difference and an average speed difference from differences between the model speed and an actual speed of the motor, thus determining whether a vibration occurs on the drive shaft. A torque correction value calculation unit calculates a motor torque correction value for anti-jerk required to damp the vibration of the drive shaft, and controls torque of the motor if the vibration occurrence determination unit determines that the vibration occurs on the drive shaft.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 14, 2015
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Tae Wook Park, Joon Young Park, Tae Hoon Lee, Hyung Bin Ihm
  • Publication number: 20130134915
    Abstract: A control method of a vehicle having a motor according to an exemplary embodiment of the present invention can include confirming that a speed of the motor is not 0 and an output torque thereof is 0 in a condition that the vehicle is being operated, confirming that a voltage of the motor converges to a regular value, and accumulating control data for the motor and processing the control data to calculate an offset value of a resolver. Accordingly, the control method of a vehicle effectively determines whether the offset of the resolver is to be compensated without affecting the drivability of the vehicle.
    Type: Application
    Filed: June 28, 2012
    Publication date: May 30, 2013
    Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANY
    Inventors: Tae Young Chung, Byunghoon Yang, Jooyoung Park, Hyung Bin Ihm
  • Publication number: 20110112709
    Abstract: The present invention relates to an anti-jerk control apparatus and method for an Hybrid Electric Vehicle (HEV). The anti-jerk control apparatus includes a model speed calculation unit for calculating a model speed of the motor in a state in which a vibration of a drive shaft is not considered. A vibration occurrence determination unit detects a speed vibration component while calculating a reference speed difference and an average speed difference from differences between the model speed and an actual speed of the motor, thus determining whether a vibration occurs on the drive shaft. A torque correction value calculation unit calculates a motor torque correction value for anti-jerk required to damp the vibration of the drive shaft, and controls torque of the motor if the vibration occurrence determination unit determines that the vibration occurs on the drive shaft.
    Type: Application
    Filed: September 30, 2010
    Publication date: May 12, 2011
    Applicants: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventors: Tae Wook Park, Joon Young Park, Tae Hoon Lee, Hyung Bin Ihm
  • Publication number: 20090157245
    Abstract: The present invention provides a method for limiting motor torque in a hybrid electric vehicle, which limits the output of motor torque that causes a reverse rotation of an engine in a soft hybrid electric vehicle in which a motor and the engine are directly connected to each other, thus preventing the engine from being damaged.
    Type: Application
    Filed: June 30, 2008
    Publication date: June 18, 2009
    Applicants: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Sang Hyeon Moon, Ji Hoon Jang, Hyung Bin Ihm, Jin Hwan Jung
  • Publication number: 20090158079
    Abstract: The present invention relates to a fault information processing system and method for a vehicle, which can satisfy a short control cycle to thereby reduce the burden applied to the CPU and enables significant fault information (freeze frame) to be frozen. To this end, this invention features that the fault detection unit, the fault processing unit, the fault management unit having independent control cycles process all the faults occurred depending on a priority in such a fashion that fault-related data (freeze frame) is frozen immediately after the occurrence of a fault irrespective of the type of the occurred fault and the priority. Also, the fault management unit retrieves the occurred fault at an independent control cycle, combines the previously frozen fault-related data and the occurred fault, and stores corresponding fault information in a buffer unit.
    Type: Application
    Filed: June 21, 2008
    Publication date: June 18, 2009
    Applicants: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Tae Young Chung, Hyung Bin Ihm
  • Patent number: 7336050
    Abstract: The control system for controlling a permanent magnet synchronous motor includes: a position detection member, an angular speed calculator, a speed controller, a current command generator, a three phase/d-q coordinate converter, a current controller, a d-q/three phase coordinate converter, and an inverter. The speed controller generates a torque command based on a difference between an angular speed command value and the calculated angular speed. The current command generator generates a q-axis current command and a d-axis current command corresponding to the torque command and the angular speed. The three phase/d-q coordinate converter generates a q-axis current feedback signal and a d-axis current feedback signal. The current controller generates a q-axis voltage command and a d-axis voltage command. The d-q/three phase coordinate converter converts the q-axis current command and the d-axis current command into three phase voltage commands.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: February 26, 2008
    Assignee: Hyundai Motor Company
    Inventor: Hyung Bin Ihm
  • Publication number: 20070252548
    Abstract: A method of protecting a power device of an inverter from overheating when a motor stalls or is operated in a low-speed range, including detecting and then performing an operation on a maximum tolerable temperature at a junction of the power device of the inverter and a casing temperature between the power device and a radiating plate, calculating an absolute value of an operating speed, and applying a pattern gain differently depending on the calculated absolute value, calculating inverter loss resulting from input motor torque and speed of the motor, performing an operation on the values calculated and calculating a difference between the temperature at the junction of the power device of the inverter and the casing temperature, limiting output of a PI controller that receives the temperature difference calculated, and limiting operational torque output of the motor according to the input motor torque command using the output of the PI controller.
    Type: Application
    Filed: December 28, 2006
    Publication date: November 1, 2007
    Inventors: Sang-Hyeon Moon, Hyung-Bin Ihm
  • Patent number: 7145310
    Abstract: A system for controlling a permanent magnet synchronous motor calculates fundamental a d-axis (or q-axis) voltage command based on a difference between a d-axis (or q-axis) current command and a d-axis (or q-axis) current feedback signal, calculates a harmonic suppression d-axis (or q-axis) voltage command used to suppress at least one higher-order harmonic current component included in a harmonic current component which is calculated based on the differences between the current feedback signals and the current commands, and calculates a d-axis (or q-axis) voltage command by adding the fundamental d-axis (or q-axis) voltage command and the harmonic suppression d-axis (or q-axis) voltage command. The d-axis and q-axis voltage commands are transformed into three-phase voltage commands, which are converted into a drive voltage for driving the permanent magnet synchronous motor. As a result, the harmonic current components are significantly suppressed and the motor's overall performance is improved.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: December 5, 2006
    Assignee: Hyundai Motor Company
    Inventors: Hyung-Bin Ihm, Gu-Bae Kang
  • Publication number: 20060132082
    Abstract: A system for controlling a permanent magnet synchronous motor calculates fundamental a d-axis (or q-axis) voltage command based on a difference between a d-axis (or q-axis) current command and a d-axis (or q-axis) current feedback signal, calculates a harmonic suppression d-axis (or q-axis) voltage command used to suppress at least one higher-order harmonic current component included in a harmonic current component which is calculated based on the differences between the current feedback signals and the current commands, and calculates a d-axis (or q-axis) voltage command by adding the fundamental d-axis (or q-axis) voltage command and the harmonic suppression d-axis (or q-axis) voltage command. The d-axis and q-axis voltage commands are transformed into three-phase voltage commands, which are converted into a drive voltage for driving the permanent magnet synchronous motor. As a result, the harmonic current components are significantly suppressed and the motor's overall performance is improved.
    Type: Application
    Filed: December 12, 2005
    Publication date: June 22, 2006
    Inventors: Hyung-Bin Ihm, Gu-Bae Kang