Patents by Inventor Hyung O. Park

Hyung O. Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8615476
    Abstract: An approaching human threat or vehicle, such as a suicide bomber nearing a secured zone such as a military base, may be detected and classified. A vibration recognition system may detect a systematic vibration event. The entity might be a medium, human, animal, or a passenger vehicle. The system may discriminate between such an event and a background or other vibration event, such as a falling tree limb. A seismic sensor may be employed to detect vibrations generated by footsteps and a vehicle. Seismic waves may be processed locally where the sensor is located. The system may wirelessly communicate with a remote command center. Temporal features of the vibration signals may be modeled by a biologically realistic neural network with good false recognition rates. The models may reject quadrupedal animal footsteps.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: December 24, 2013
    Assignee: University of Southern California
    Inventors: Theodore W. Berger, Alireza Dibazar, Hyung O. Park
  • Patent number: 8077036
    Abstract: A system for detecting and classifying a security breach may include at least one sensor configured to detect seismic vibration from a source, and to generate an output signal that represents the detected seismic vibration. The system may further include a controller that is configured to extract a feature vector from the output signal of the sensor and to measure one or more likelihoods of the extracted feature vector relative to set {bi} (i=1, . . . , imax) of breach classes bi. The controller may be further configured to classify the detected seismic vibration as a security breach belonging to one of the breach classes bi, by choosing a breach class within the set {bi} that has a maximum likelihood.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: December 13, 2011
    Assignee: University of Southern California
    Inventors: Theodore W. Berger, Alireza Dibazar, Ali Yousefi, Hyung O. Park
  • Publication number: 20100268671
    Abstract: An approaching human threat or vehicle, such as a suicide bomber nearing a secured zone such as a military base, may be detected and classified. A vibration recognition system may detect a systematic vibration event. The entity might be a medium, human, animal, or a passenger vehicle. The system may discriminate between such an event and a background or other vibration event, such as a falling tree limb. A seismic sensor may be employed to detect vibrations generated by footsteps and a vehicle. Seismic waves may be processed locally where the sensor is located. The system may wirelessly communicate with a remote command center. Temporal features of the vibration signals may be modeled by a Dynamic Synapse Neural Network (DSNN) with good false recognition rates. The models may reject quadrupedal animal footsteps.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 21, 2010
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Theodore W. Berger, Alireza Dibazar, Hyung O. Park
  • Publication number: 20100260011
    Abstract: Systems, methods, and apparatus are described that provide for analysis of seismic data. Features of temporal gait patterns can be extracted from seismic/vibration data. A mean temporal gait pattern can be determined. A statistical classifier can be used to model features of the data. The model can be used to classify the data. As a result, discrimination of seismic sources can be performed. Systems for discrimination of seismic data are also described. A system can include a vibration sensor system configured and arranged to detect vibrations. A system can also include a processor system configured and arranged to receive data from the vibration sensor, recognize the seismic data as belonging to a particular class of seismic data, and produce an output signal corresponding to the recognized particular class of seismic data.
    Type: Application
    Filed: April 8, 2010
    Publication date: October 14, 2010
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Theodore W. Berger, Alireza Dibazar, Hyung O. Park
  • Publication number: 20090309725
    Abstract: A system for detecting and classifying a security breach may include at least one sensor configured to detect seismic vibration from a source, and to generate an output signal that represents the detected seismic vibration. The system may further include a controller that is configured to extract a feature vector from the output signal of the sensor and to measure one or more likelihoods of the extracted feature vector relative to set {bi} (i=1, . . . , imax) of breach classes bi. The controller may be further configured to classify the detected seismic vibration as a security breach belonging to one of the breach classes bi, by choosing a breach class within the set {bi} that has a maximum likelihood.
    Type: Application
    Filed: October 2, 2008
    Publication date: December 17, 2009
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Theodore W. Berger, Alireza Dibazar, Ali Yousefi, Hyung O. Park