Patents by Inventor Hyung Sup Yoon

Hyung Sup Yoon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250001352
    Abstract: The present disclosure relates to a pressure swing adsorption apparatus for high purity hydrogen purification from ammonia decomposition and a hydrogen purification method using the same, and more specifically, the pressure swing adsorption apparatus includes a plurality of adsorption towers including a guard bed unit and a hydrogen purification unit, in which each adsorption tower is packed with different adsorbents, to purify high purity hydrogen from mixed hydrogen gas produced after ammonia decomposition, make it easy to replace the adsorbent for ammonia removal, minimize the likelihood that the lifetime of the adsorbent in the hydrogen purification unit is drastically reduced by trace amounts of ammonia, efficiently recover hydrogen of the guard bed unit, thereby maximizing the hydrogen recovery rate compared to a conventional pressure swing adsorption process including a pretreatment unit and a hydrogen purification unit, and respond to a large change in ammonia concentration in the raw material.
    Type: Application
    Filed: May 17, 2023
    Publication date: January 2, 2025
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sang-sup HAN, Hyung-chul YOON, Hee-tae BEUM, Kanghee CHO, Sun Hyung KIM, Hyung Kuk JU, Jae Hyung KIM, Kyungho LEE, Jong-ho PARK, Jong-nam KIM
  • Publication number: 20240286108
    Abstract: The present invention is to provide a carbon dioxide adsorbent that can collect carbon dioxide generated during a natural gas reforming process at a high concentration and has an excellent adsorption working capacity, a manufacturing method of the same, and a device and process using the same. The carbon dioxide adsorbent according to various examples of the present invention is characterized by including X-type or Y-type zeolite in which at least a part of alkali metal cations or alkali earth metal cations is replaced with H+ ions.
    Type: Application
    Filed: April 23, 2024
    Publication date: August 29, 2024
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Jong-ho PARK, Hyung Jin YOON, Hee-tae BEUM, Sang-sup HAN, Jongkee PARK, Ko-yeon CHOO
  • Patent number: 11315951
    Abstract: Provided are a semiconductor device and a method of fabricating the same. The semiconductor device includes a substrate having a first region and a second region, a buffer layer disposed on the substrate, a semiconductor layer disposed on the buffer layer, a barrier layer disposed on the semiconductor layer, a first source electrode, a first drain electrode, and a first gate electrode disposed therebetween, which are disposed on the barrier layer in the first region, a second source electrode, a second drain electrode, and a second gate electrode disposed therebetween, which are disposed on the barrier layer in the second region, and a ferroelectric pattern interposed between the first gate electrode and the barrier layer.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: April 26, 2022
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung-Jae Chang, Dong Min Kang, Sung-Bum Bae, Hyung Sup Yoon, Kyu Jun Cho
  • Publication number: 20210143182
    Abstract: Provided are a semiconductor device and a method of fabricating the same. The semiconductor device includes a substrate having a first region and a second region, a buffer layer disposed on the substrate, a semiconductor layer disposed on the buffer layer, a barrier layer disposed on the semiconductor layer, a first source electrode, a first drain electrode, and a first gate electrode disposed therebetween, which are disposed on the barrier layer in the first region, a second source electrode, a second drain electrode, and a second gate electrode disposed therebetween, which are disposed on the barrier layer in the second region, and a ferroelectric pattern interposed between the first gate electrode and the barrier layer.
    Type: Application
    Filed: November 11, 2020
    Publication date: May 13, 2021
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sung-Jae CHANG, Dong Min KANG, Sung-Bum BAE, Hyung Sup YOON, Kyu Jun CHO
  • Patent number: 10608102
    Abstract: Provided is a semiconductor device including a substrate in which an insulation layer is disposed between a first semiconductor layer and a second semiconductor layer, a through-hole penetrating through the substrate, the through-hole having a first hole penetrating through the first semiconductor layer and a second hole penetrating through the insulation layer and the second semiconductor layer from a bottom surface of the first hole, an epi-layer disposed inside the through-hole, a drain electrode disposed inside the second hole and contacting one surface of the epi-layer, and a source electrode and a gate electrode which are disposed on the other surface of the epi-layer.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: March 31, 2020
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hokyun Ahn, Min Jeong Shin, Jeong Jin Kim, Hae Cheon Kim, Jae Won Do, Byoung-Gue Min, Hyung Sup Yoon, Hyung Seok Lee, Jong-Won Lim, Sungjae Chang, Hyunwook Jung, Kyu Jun Cho, Dong Min Kang, Dong-Young Kim, Seong-Il Kim, Sang-Heung Lee, Jongmin Lee, Hong Gu Ji
  • Patent number: 10256811
    Abstract: Provided is a cascode circuit including first and second transistors connected between a drain terminal and a source terminal in cascode form, a level sifter configured to change a voltage level of a switching control signal applied to a gate terminal and provide the changed switching control signal to a gate of the first transistor, a buffer configured to delay the switching control signal and provide the delayed switching control signal to a gate of the second transistor, and a first resistor connected between the level shifter and the gate of the first transistor.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: April 9, 2019
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Woojin Chang, Jong-Won Lim, Dong Min Kang, Dong-Young Kim, Seong-il Kim, Hae Cheon Kim, Jae Won Do, Byoung-Gue Min, Min Jeong Shin, Hokyun Ahn, Hyung Sup Yoon, Sang-Heung Lee, Jongmin Lee, Sungjae Chang, Yoo Jin Jang, Hyunwook Jung, Kyu Jun Cho, Hong Gu Ji
  • Publication number: 20190103483
    Abstract: Provided is a semiconductor device including a substrate in which an insulation layer is disposed between a first semiconductor layer and a second semiconductor layer, a through-hole penetrating through the substrate, the through-hole having a first hole penetrating through the first semiconductor layer and a second hole penetrating through the insulation layer and the second semiconductor layer from a bottom surface of the first hole, an epi-layer disposed inside the through-hole, a drain electrode disposed inside the second hole and contacting one surface of the epi-layer, and a source electrode and a gate electrode which are disposed on the other surface of the epi-layer.
    Type: Application
    Filed: September 20, 2018
    Publication date: April 4, 2019
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hokyun AHN, Min Jeong SHIN, Jeong Jin KIM, Hae Cheon KIM, Jae Won DO, Byoung-Gue MIN, Hyung Sup YOON, Hyung Seok LEE, Jong-Won LIM, Sungjae CHANG, Hyunwook JUNG, Kyu Jun CHO, Dong Min KANG, Dong-Young KIM, SEONG-IL KIM, Sang-Heung LEE, Jongmin LEE, Hong Gu JI
  • Publication number: 20190081166
    Abstract: Provided is a gate-all-around device. The gate-all-around device includes a substrate, a pair of heterojunction source/drain regions provided on the substrate, a heterojunction channel region provided between the pair of heterojunction source/drain regions, and a pair of ohmic electrodes provided on the pair of heterojunction source/drain regions, respectively. Each of the pair of heterojunction source/drain regions includes a pair of two-dimensional electron gas layers. The pair of ohmic electrodes extends toward an upper surface of the substrate and pass through the pair of heterojunction source/drain regions, respectively.
    Type: Application
    Filed: July 6, 2018
    Publication date: March 14, 2019
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jae Won DO, Dong Min KANG, Dong-Young KIM, SEONG-IL KIM, Hae Cheon KIM, Byoung-Gue MIN, Min Jeong SHIN, Hokyun AHN, Hyung Sup YOON, Sang-Heung LEE, Jongmin LEE, Jong-Won LIM, Sungjae CHANG, Yoo Jin JANG, Hyunwook JUNG, Kyu Jun CHO, Hong Gu JI
  • Patent number: 10134854
    Abstract: A high electron mobility transistor includes a substrate including a first surface and a second surface facing each other and having a via hole passing through the first surface and the second surface, an active layer on the first surface, a cap layer on the active layer and including a gate recess region exposing a portion of the active layer, a source electrode and a drain electrode on one of the cap layer and the active layer, an insulating layer on the source electrode and the drain electrode and having on opening corresponding to the gate recess region to expose the gate recess region, a first field electrode on the insulating layer, a gate electrode electrically connected to the first field electrode on the insulating layer, and a second field electrode on the second surface and contacting the active layer through the via hole.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: November 20, 2018
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Ho Kyun Ahn, Dong Min Kang, Yong-Hwan Kwon, Dong-Young Kim, Seong Il Kim, Hae Cheon Kim, Eun Soo Nam, Jae Won Do, Byoung-Gue Min, Hyung Sup Yoon, Sang-Heung Lee, Jong Min Lee, Jong-Won Lim, Hyun Wook Jung, Kyu Jun Cho
  • Publication number: 20180145684
    Abstract: Provided is a cascode circuit including first and second transistors connected between a drain terminal and a source terminal in cascode form, a level sifter configured to change a voltage level of a switching control signal applied to a gate terminal and provide the changed switching control signal to a gate of the first transistor, a buffer configured to delay the switching control signal and provide the delayed switching control signal to a gate of the second transistor, and a first resistor connected between the level shifter and the gate of the first transistor.
    Type: Application
    Filed: July 20, 2017
    Publication date: May 24, 2018
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Woojin CHANG, Jong-Won LIM, Dong Min KANG, Dong-Young KIM, Seong-il KIM, Hae Cheon KIM, Jae Won DO, BYOUNG-GUE MIN, Min Jeong SHIN, Hokyun AHN, Hyung Sup YOON, Sang-Heung LEE, JONGMIN LEE, Sungjae CHANG, Yoo Jin JANG, HYUNWOOK JUNG, Kyu Jun CHO, Hong Gu JI
  • Patent number: 9899226
    Abstract: Provided herein is a semiconductor device including a substrate; an active layer formed on top of the substrate; a protective layer formed on top of the active layer and having a first aperture; a source electrode, driving gate electrode and drain electrode formed on top of the protective layer; and a first additional gate electrode formed on top of the first aperture, wherein an electric field is applied to the active layer, protective layer and driving gate electrode due to a voltage applied to each of the source electrode, drain electrode and driving gate electrode, and the first additional gate electrode is configured to attenuate a size of the electric field applied to at least a portion of the active layer, protective layer and driving gate electrode.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: February 20, 2018
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Ho Kyun Ahn, Hae Cheon Kim, Jong Won Lim, Dong Min Kang, Yong Hwan Kwon, Seong Il Kim, Zin Sig Kim, Eun Soo Nam, Byoung Gue Min, Hyung Sup Yoon, Kyung Ho Lee, Jong Min Lee, Kyu Jun Cho
  • Patent number: 9837719
    Abstract: Provided herein is a patch antenna including a multilayered substrate on which a plurality of dielectric layers are laminated; at least one metal pattern layer disposed between the plurality of dielectric layers outside a central area of the multilayered substrate; an antenna patch disposed on an upper surface of the multilayered substrate and within the central area; a ground layer disposed on a lower surface of the multilayered substrate; a plurality of connection via patterns penetrating the plurality of dielectric layers to connect the metal pattern layer and the ground layer, and surrounding the central area; a transmission line comprising a first transmission line unit disposed on the upper surface of the multilayered substrate and located outside the central area, and a second transmission line unit disposed on the upper surface of the multilayered substrate and located within the central area; and an impedance transformer located below the second transmission line unit within the central area of the m
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: December 5, 2017
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Dong-Young Kim, Dong Min Kang, Seong-Il Kim, Hae Cheon Kim, Jae Won Do, Byoung-Gue Min, Ho Kyun Ahn, Hyung Sup Yoon, Sang-Heung Lee, Jong Min Lee, Jong-Won Lim, Yoo Jin Jang, Hyun Wook Jung, Kyu Jun Cho, Chull Won Ju
  • Patent number: 9780176
    Abstract: The present invention relates to a high reliability field effect power device and a manufacturing method thereof. A method of manufacturing a field effect power device includes sequentially forming a transfer layer, a buffer layer, a barrier layer and a passivation layer on a substrate, patterning the passivation layer by etching a first region of the passivation layer, and forming at least one electrode on the first region of the barrier layer exposed by patterning the passivation layer, wherein the first region is provided to form the at least one electrode, and the passivation layer may include a material having a wider bandgap than the barrier layer to prevent a trapping effect and a leakage current of the field effect power device.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: October 3, 2017
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jong Min Lee, Byoung-Gue Min, Hyung Sup Yoon, Dong Min Kang, Dong-Young Kim, Seong-Il Kim, Hae Cheon Kim, Jae Won Do, Ho Kyun Ahn, Sang-Heung Lee, Jong-Won Lim, Hyun Wook Jung, Kyu Jun Cho, Chull Won Ju
  • Publication number: 20170237171
    Abstract: Provided herein is a patch antenna including a multilayered substrate on which a plurality of dielectric layers are laminated; at least one metal pattern layer disposed between the plurality of dielectric layers outside a central area of the multilayered substrate; an antenna patch disposed on an upper surface of the multilayered substrate and within the central area; a ground layer disposed on a lower surface of the multilayered substrate; a plurality of connection via patterns penetrating the plurality of dielectric layers to connect the metal pattern layer and the ground layer, and surrounding the central area; a transmission line comprising a first transmission line unit disposed on the upper surface of the multilayered substrate and located outside the central area, and a second transmission line unit disposed on the upper surface of the multilayered substrate and located within the central area; and an impedance transformer located below the second transmission line unit within the central area of the m
    Type: Application
    Filed: August 5, 2016
    Publication date: August 17, 2017
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Dong-Young KIM, Dong Min KANG, SEONG-IL KIM, Hae Cheon KIM, Jae Won DO, Byoung-Gue MIN, Ho Kyun AHN, Hyung Sup YOON, Sang-Heung LEE, Jong Min LEE, Jong-Won LIM, Yoo Jin JANG, Hyun Wook JUNG, Kyu Jun CHO, Chull Won JU
  • Publication number: 20170236909
    Abstract: A high electron mobility transistor includes a substrate including a first surface and a second surface facing each other and having a via hole passing through the first surface and the second surface, an active layer on the first surface, a cap layer on the active layer and including a gate recess region exposing a portion of the active layer, a source electrode and a drain electrode on one of the cap layer and the active layer, an insulating layer on the source electrode and the drain electrode and having on opening corresponding to the gate recess region to expose the gate recess region, a first field electrode on the insulating layer, a gate electrode electrically connected to the first field electrode on the insulating layer, and a second field electrode on the second surface and contacting the active layer through the via hole.
    Type: Application
    Filed: August 26, 2016
    Publication date: August 17, 2017
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Ho Kyun AHN, Dong Min KANG, Yong-Hwan KWON, Dong-Young KIM, SEONG IL KIM, Hae Cheon KIM, Eun Soo NAM, Jae Won DO, Byoung-Gue MIN, Hyung Sup YOON, Sang-Heung LEE, Jong Min LEE, Jong-Won LIM, Hyun Wook JUNG, Kyu Jun CHO
  • Publication number: 20170133471
    Abstract: The present invention relates to a high reliability field effect power device and a manufacturing method thereof. A method of manufacturing a field effect power device includes sequentially forming a transfer layer, a buffer layer, a barrier layer and a passivation layer on a substrate, patterning the passivation layer by etching a first region of the passivation layer, and forming at least one electrode on the first region of the barrier layer exposed by patterning the passivation layer, wherein the first region is provided to form the at least one electrode, and the passivation layer may include a material having a wider bandgap than the barrier layer to prevent a trapping effect and a leakage current of the field effect power device.
    Type: Application
    Filed: August 16, 2016
    Publication date: May 11, 2017
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Jong Min LEE, Byoung-Gue MIN, Hyung Sup YOON, Dong Min KANG, Dong-Young KIM, SEONG-IL KIM, Hae Cheon KIM, Jae Won DO, Ho Kyun AHN, Sang-Heung LEE, Jong-Won LIM, Hyun Wook JUNG, Kyu Jun CHO, Chull Won JU
  • Patent number: 9634112
    Abstract: A field effect transistor is provided. The field effect transistor may include a capping layer on a substrate, a source ohmic electrode and a drain ohmic electrode on the capping layer, a first insulating layer and a second insulating layer stacked on the capping layer to cover the source and drain ohmic electrodes, a ?-shaped gate electrode including a leg portion and a head portion, the leg portion being connected to the substrate between the source ohmic electrode and the drain ohmic electrode, and the head portion extending from the leg portion to cover a top surface of the second insulating layer, a first planarization layer on the second insulating layer to cover the ?-shaped gate electrode, and a first electrode on the first planarization layer, the first electrode being connected to the source ohmic electrode or the drain ohmic electrode.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: April 25, 2017
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Hyung Sup Yoon, Byoung-Gue Min, Jong-Won Lim, Hokyun Ahn, Seong-Il Kim, Sang Heung Lee, Dong Min Kang, Chull Won Ju, Jae Kyoung Mun
  • Patent number: 9537458
    Abstract: Provided herein is a feedback amplifier including an amplifier circuit configured to amplify an input signal input from an input terminal and output the amplified input signal to an output terminal; a feedback circuit configured to apply a feedback resistance value to a signal output to the output terminal, and to control a gain of the amplifier circuit by adjusting the input signal by a bias voltage applied with a feedback resistance value determined; a packet signal sensor configured to generate a fixed resistance control signal for controlling a fixed resistance value included in the feedback resistance value through a comparison between the output from the output terminal with a minimum signal level; and a fixed resistance controller configured to control the fixed resistance value included in the feedback resistance value in response to the fixed resistance control signal.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: January 3, 2017
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sang Heung Lee, Dong Min Kang, Seong Il Kim, Ho Kyun Ahn, Hyung Sup Yoon, Jong Won Lim, Chull Won Ju
  • Patent number: 9490214
    Abstract: A semiconductor device may include a substrate having a lower via-hole, an epitaxial layer having an opening exposing a top surface of the substrate, a semiconductor chip disposed on the top surface of the substrate and including first, second, and third electrodes, an upper metal layer connected to the first electrode, a supporting substrate disposed on the upper metal layer and having an upper via-hole, an upper pad disposed on the substrate and extending into the upper via-hole, a lower pad connected to the second electrode in the opening, and a lower metal layer covering a bottom surface of the substrate and connected to the lower pad through the lower via-hole.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: November 8, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Byoung-Gue Min, Sang Choon Ko, Jong-Won Lim, Hokyun Ahn, Hyung Sup Yoon, Jae Kyoung Mun, Eun Soo Nam
  • Patent number: 9438199
    Abstract: Provided herein is a component package including a matching unit and a matching method thereof, the matching unit including: a substrate; a transmission line formed on the substrate, the transmission line being connected to a terminal of the component package; a bonding wire electrically connecting the transmission line and a central component; and a capacitor unit having a plurality of capacitors electrically connected with the transmission line by wiring connection, wherein an inductance of the matching unit is variable by adjusting a length of the bonding wire, and a capacitance of the matching unit is variable by increasing or reducing the number of capacitors electrically connected to the transmission line, of among the capacitors inside the capacitor unit, by extending or cutting off the wiring connection.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: September 6, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Dong Min Kang, Seong Il Kim, Sang Heung Lee, Chull Won Ju, Ho Kyun Ahn, Hyung Sup Yoon, Jong Won Lim