Patents by Inventor Hyunghoon Cho

Hyunghoon Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11676686
    Abstract: Methods and computer apparatuses are disclosed for processing genomic data in at least partially automated workflows of modules. A method comprises: specifying a source from which nucleic acid sequence(s) are to be obtained; selecting module(s) for processing data, including at least one module for processing the one or more nucleic acid sequences; presenting, in a graphical user interface, graphical components representing the source and the module(s) as nodes within a workspace; receiving, via the graphical user interface, inputs arranging the source and the module(s) as a workflow comprising a series of nodes, the series indicating, for each particular module, that output from one of the source or another particular module is to be input into the particular module; generating an output for the workflow based upon the nucleic acid sequence(s) by processing each module in an order indicated by the series.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: June 13, 2023
    Assignee: Palantir Technologies Inc.
    Inventors: Lekan Wang, Hyunghoon Cho, Abimanyu Raja, Elizabeth Caudill
  • Publication number: 20230154630
    Abstract: Computationally-efficient techniques facilitate secure pharmacological collaboration with respect to private drug target interaction (DTI) data. In one embodiment, a method begins by receiving, via a secret sharing protocol, observed DTI data from individual participating entities. A secure computation then is executed against the secretly-shared data to generate a pooled DTI dataset. For increased computational efficiency, at least a part of the computation is executed over dimensionality-reduced data. The resulting pooled DTI dataset is then used to train a neural network model. The model is then used to provide one or more DTI predictions that are then returned to the participating entities (or other interested parties).
    Type: Application
    Filed: September 20, 2022
    Publication date: May 18, 2023
    Inventors: Brian Hie, Bonnie Berger Leighton, Hyunghoon Cho
  • Patent number: 11450439
    Abstract: Computationally-efficient techniques facilitate secure pharmacological collaboration with respect to private drug target interaction (DTI) data. In one embodiment, a method begins by receiving, via a secret sharing protocol, observed DTI data from individual participating entities. A secure computation then is executed against the secretly-shared data to generate a pooled DTI dataset. For increased computational efficiency, at least a part of the computation is executed over dimensionality-reduced data. The resulting pooled DTI dataset is then used to train a neural network model. The model is then used to provide one or more DTI predictions that are then returned to the participating entities (or other interested parties).
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: September 20, 2022
    Inventors: Brian Hie, Bonnie Berger Leighton, Hyunghoon Cho
  • Publication number: 20210398611
    Abstract: Computationally-efficient techniques facilitate secure crowdsourcing of genomic and phenotypic data, e.g., for large-scale association studies. In one embodiment, a method begins by receiving, via a secret sharing protocol, genomic and phenotypic data of individual study participants. Another data set, comprising results of pre-computation over random number data, e.g., mutually independent and uniformly-distributed random numbers and results of calculations over those random numbers, is also received via secret sharing. A secure computation then is executed against the secretly-shared genomic and phenotypic data, using the secretly-shared results of the pre-computation over random number data, to generate a set of genome-wide association study (GWAS) statistics. For increased computational efficiency, at least a part of the computation is executed over dimensionality-reduced genomic data.
    Type: Application
    Filed: February 1, 2021
    Publication date: December 23, 2021
    Inventors: Hyunghoon Cho, Bonnie Berger Leighton, David J. Wu
  • Publication number: 20210383896
    Abstract: Methods and computer apparatuses are disclosed for processing genomic data in at least partially automated workflows of modules. A method comprises: specifying a source from which nucleic acid sequence(s) are to be obtained; selecting module(s) for processing data, including at least one module for processing the one or more nucleic acid sequences; presenting, in a graphical user interface, graphical components representing the source and the module(s) as nodes within a workspace; receiving, via the graphical user interface, inputs arranging the source and the module(s) as a workflow comprising a series of nodes, the series indicating, for each particular module, that output from one of the source or another particular module is to be input into the particular module; generating an output for the workflow based upon the nucleic acid sequence(s) by processing each module in an order indicated by the series.
    Type: Application
    Filed: June 23, 2021
    Publication date: December 9, 2021
    Inventors: Lekan Wang, Hyunghoon Cho, Abimanyu Raja, Elizabeth Caudill
  • Patent number: 11074993
    Abstract: Methods and computer apparatuses are disclosed for processing genomic data in at least partially automated workflows of modules. A method comprises: specifying a source from which nucleic acid sequence(s) are to be obtained; selecting module(s) for processing data, including at least one module for processing the one or more nucleic acid sequences; presenting, in a graphical user interface, graphical components representing the source and the module(s) as nodes within a workspace; receiving, via the graphical user interface, inputs arranging the source and the module(s) as a workflow comprising a series of nodes, the series indicating, for each particular module, that output from one of the source or another particular module is to be input into the particular module; generating an output for the workflow based upon the nucleic acid sequence(s) by processing each module in an order indicated by the series.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: July 27, 2021
    Assignee: PALANTIR TECHNOLOGIES INC.
    Inventors: Lekan Wang, Hyunghoon Cho, Abimanyu Raja, Elizabeth Caudill
  • Patent number: 10910087
    Abstract: Computationally-efficient techniques facilitate secure crowdsourcing of genomic and phenotypic data, e.g., for large-scale association studies. In one embodiment, a method begins by receiving, via a secret sharing protocol, genomic and phenotypic data of individual study participants. Another data set, comprising results of pre-computation over random number data, e.g., mutually independent and uniformly-distributed random numbers and results of calculations over those random numbers, is also received via secret sharing. A secure computation then is executed against the secretly-shared genomic and phenotypic data, using the secretly-shared results of the pre-computation over random number data, to generate a set of genome-wide association study (GWAS) statistics. For increased computational efficiency, at least a part of the computation is executed over dimensionality-reduced genomic data.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: February 2, 2021
    Inventors: Hyunghoon Cho, Bonnie Berger Leighton, David J. Wu
  • Publication number: 20190371435
    Abstract: Methods and computer apparatuses are disclosed for processing genomic data in at least partially automated workflows of modules. A method comprises: specifying a source from which nucleic acid sequence(s) are to be obtained; selecting module(s) for processing data, including at least one module for processing the one or more nucleic acid sequences; presenting, in a graphical user interface, graphical components representing the source and the module(s) as nodes within a workspace; receiving, via the graphical user interface, inputs arranging the source and the module(s) as a workflow comprising a series of nodes, the series indicating, for each particular module, that output from one of the source or another particular module is to be input into the particular module; generating an output for the workflow based upon the nucleic acid sequence(s) by processing each module in an order indicated by the series.
    Type: Application
    Filed: August 16, 2019
    Publication date: December 5, 2019
    Inventors: Lekan Wang, Hyunghoon Cho, Abimanyu Raja, Elizabeth Caudill
  • Publication number: 20190311813
    Abstract: Computationally-efficient techniques facilitate secure pharmacological collaboration with respect to private drug target interaction (DTI) data. In one embodiment, a method begins by receiving, via a secret sharing protocol, observed DTI data from individual participating entities. A secure computation then is executed against the secretly-shared data to generate a pooled DTI dataset. For increased computational efficiency, at least a part of the computation is executed over dimensionality-reduced data. The resulting pooled DTI dataset is then used to train a neural network model. The model is then used to provide one or more DTI predictions that are then returned to the participating entities (or other interested parties).
    Type: Application
    Filed: December 28, 2018
    Publication date: October 10, 2019
    Inventors: Brian Hie, Bonnie Berger Leighton, Hyunghoon Cho
  • Patent number: 10431327
    Abstract: Methods and computer apparatuses are disclosed for processing genomic data in at least partially automated workflows of modules. A method comprises: specifying a source from which nucleic acid sequence(s) are to be obtained; selecting module(s) for processing data, including at least one module for processing the one or more nucleic acid sequences; presenting, in a graphical user interface, graphical components representing the source and the module(s) as nodes within a workspace; receiving, via the graphical user interface, inputs arranging the source and the module(s) as a workflow comprising a series of nodes, the series indicating, for each particular module, that output from one of the source or another particular module is to be input into the particular module; generating an output for the workflow based upon the nucleic acid sequence(s) by processing each module in an order indicated by the series.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: October 1, 2019
    Assignee: Palantir Technologies Inc.
    Inventors: Lekan Wang, Hyunghoon Cho, Abimanyu Raja, Elizabeth Caudill
  • Publication number: 20180373834
    Abstract: Computationally-efficient techniques facilitate secure crowdsourcing of genomic and phenotypic data, e.g., for large-scale association studies. In one embodiment, a method begins by receiving, via a secret sharing protocol, genomic and phenotypic data of individual study participants. Another data set, comprising results of pre-computation over random number data, e.g., mutually independent and uniformly-distributed random numbers and results of calculations over those random numbers, is also received via secret sharing. A secure computation then is executed against the secretly-shared genomic and phenotypic data, using the secretly-shared results of the pre-computation over random number data, to generate a set of genome-wide association study (GWAS) statistics. For increased computational efficiency, at least a part of the computation is executed over dimensionality-reduced genomic data.
    Type: Application
    Filed: June 27, 2018
    Publication date: December 27, 2018
    Inventors: Hyunghoon Cho, Bonnie Berger Leighton, David J. Wu
  • Publication number: 20170046481
    Abstract: Methods and computer apparatuses are disclosed for processing genomic data in at least partially automated workflows of modules. A method comprises: specifying a source from which nucleic acid sequence(s) are to be obtained; selecting module(s) for processing data, including at least one module for processing the one or more nucleic acid sequences; presenting, in a graphical user interface, graphical components representing the source and the module(s) as nodes within a workspace; receiving, via the graphical user interface, inputs arranging the source and the module(s) as a workflow comprising a series of nodes, the series indicating, for each particular module, that output from one of the source or another particular module is to be input into the particular module; generating an output for the workflow based upon the nucleic acid sequence(s) by processing each module in an order indicated by the series.
    Type: Application
    Filed: October 31, 2016
    Publication date: February 16, 2017
    Inventors: Lekan Wang, Hyunghoon Cho, Abimanyu Raja, Elizabeth Caudill
  • Patent number: 9501202
    Abstract: Methods and computer apparatuses are disclosed for processing genomic data in at least partially automated workflows of modules. A method comprises: specifying a source from which nucleic acid sequence(s) are to be obtained; selecting module(s) for processing data, including at least one module for processing the one or more nucleic acid sequences; presenting, in a graphical user interface, graphical components representing the source and the module(s) as nodes within a workspace; receiving, via the graphical user interface, inputs arranging the source and the module(s) as a workflow comprising a series of nodes, the series indicating, for each particular module, that output from one of the source or another particular module is to be input into the particular module; generating an output for the workflow based upon the nucleic acid sequence(s) by processing each module in an order indicated by the series.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 22, 2016
    Assignee: Palantir Technologies, Inc.
    Inventors: Lekan Wang, Hyunghoon Cho, Abimanyu Raja, Elizabeth Caudill