Patents by Inventor HyungMin Chae

HyungMin Chae has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11772162
    Abstract: A powder bed fusion system includes a powder bed including a build surface and a vacuum system. The vacuum system includes a collection device positioned over the build surface. The collection device includes a body, a pathway defined in the body, wherein the pathway ends in a passageway opening, and a particle retainer connected to the body near the passageway opening. A method of forming a component includes forming a layer of unfused metal powder on a powder bed with a recoater, introducing gas to the powder bed and applying a vacuum with a collection device, fusing a portion of the layer of unfused metal powder on the powder bed with a heat source to form a component layer and generating contaminants, collecting the contaminants from the powder bed with the gas and the vacuum applied by the collection device.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: October 3, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Md Ashabul Anam, Mark A Smith, Tyson W Brown, Richard J Skurkis, HyungMin Chae, Whitney A Poling
  • Patent number: 11745297
    Abstract: Systems and methods are provided for shape controlled gripping of a workpiece. A layer jamming structure includes a membrane defining an internal cavity containing a number of overlapping material layers. A pressure system includes a pump coupled with the internal cavity. A shape conforming tool includes at least one part configured to move to apply a force to the layer jamming structure. The shape conforming tool, by operation of the part, conforms the layer jamming structure to the workpiece. The pressure system, with operation of the pump, changes a pressure in the internal cavity to impart rigidity to the layer jamming structure.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: September 5, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: HyungMin Chae, Tyson W. Brown, Mark A. Smith, Richard J. Skurkis, Wonhee M. Kim
  • Patent number: 11666998
    Abstract: Systems and methods are provided for gripping of a workpiece with a layer jamming structure having rigid datum structures. A system includes a layer jamming structure configurable in an inactivated conformable state, with a membrane defining an internal cavity containing a number of overlapping material layers. The rigid structures engage the layer jamming structure. A pressure system includes a pump coupled with the internal cavity to change a pressure therein to transform the layer jamming structure from the inactivated conformable state to an activated rigid state disposed around the workpiece. The rigid structures help conform the layer jamming structure to the workpiece during transformation to the activated rigid state and to present datum fixturing surfaces in the activated rigid state.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: June 6, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: HyungMin Chae, Tyson W. Brown, Richard J. Skurkis, Md Ashabul Anam, Wonhee M. Kim
  • Patent number: 11590575
    Abstract: A system and method for additive manufacturing are provided. The system includes a structure defining a chamber for manufacturing parts via additive manufacturing. A powder metal applicator is configured to deposit layers of powder metal material to build a part on a build platform. A laser source is configured to direct one or more laser beams onto each layer of powder metal material to fuse the powder metal material, wherein metal condensate is created by the laser beam(s) contacting the powder metal material. An element spaced apart from the layers of powder material has a temperature different than the chamber temperature, so that the element is configured to attract or repel the metal condensate by virtue of the temperature differential between the element and the chamber. The method includes using the element having the different temperature to attract or repel the metal condensate within the chamber.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: February 28, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Mark A. Smith, Tyson W. Brown, HyungMin Chae, Md Ashabul Anam, Whitney A. Poling, Richard J. Skurkis
  • Patent number: 11534972
    Abstract: A post-build powder removal system includes a work bed, a platform wall having at least one powder evacuation port, and an evacuation port sealing system operable for selectively closing and opening the powder evacuation port. The platform wall cooperates with the work bed to define a powder chamber. The evacuation port sealing system includes an external sleeve slidingly fitted onto the exterior surface of the platform wall such that the external sleeve is slideable in a first direction closing the at least one powder evacuation port and slideable in an opposite second direction opening the at least one powder evacuation port.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: December 27, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Richard J. Skurkis, Whitney A. Poling, Mark A. Smith, Tyson W. Brown, Md Ashabul Anam, HyungMin Chae, Blair E. Carlson
  • Patent number: 11465351
    Abstract: A configurable build volume system for a powder bed fusion manufacturing process includes a chamber wall defining a chamber, the chamber wall extending in the X-, Y-, and Z-axis directions, a plurality of build platforms enclosed within the chamber, a plurality of adjustment mechanisms coupled to the plurality of build platforms such that each build platform is coupled to a separate adjustment mechanism, a sensor mounted within the chamber and configured to capture data regarding a Z-axis position of each of the plurality of build platforms, and a controller in electronic communication with the plurality of adjustment mechanisms and the sensor. The controller receives the Z-axis position data and generates a plurality of control signals to adjust a Z-axis position of each of the plurality of build platforms and each of the plurality of build platforms is actively and independently controlled by the controller.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: October 11, 2022
    Assignee: GM Global Technology Operations LLC
    Inventors: HyungMin Chae, Mark A. Smith, Richard J. Skurkis, Whitney A. Poling
  • Publication number: 20220161380
    Abstract: Systems and methods are provided for shape controlled gripping of a workpiece. A layer jamming structure includes a membrane defining an internal cavity containing a number of overlapping material layers. A pressure system includes a pump coupled with the internal cavity. A shape conforming tool includes at least one part configured to move to apply a force to the layer jamming structure. The shape conforming tool, by operation of the part, conforms the layer jamming structure to the workpiece. The pressure system, with operation of the pump, changes a pressure in the internal cavity to impart rigidity to the layer jamming structure.
    Type: Application
    Filed: November 24, 2020
    Publication date: May 26, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: HyungMin Chae, Tyson W. Brown, Mark A. Smith, Richard J. Skurkis, Wonhee M. Kim
  • Publication number: 20220161378
    Abstract: Systems and methods are provided for gripping of a workpiece with a layer jamming structure having rigid datum structures. A system includes a layer jamming structure configurable in an inactivated conformable state, with a membrane defining an internal cavity containing a number of overlapping material layers. The rigid structures engage the layer jamming structure. A pressure system includes a pump coupled with the internal cavity to change a pressure therein to transform the layer jamming structure from the inactivated conformable state to an activated rigid state disposed around the workpiece. The rigid structures help conform the layer jamming structure to the workpiece during transformation to the activated rigid state and to present datum fixturing surfaces in the activated rigid state.
    Type: Application
    Filed: November 24, 2020
    Publication date: May 26, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: HyungMin Chae, Tyson W. Brown, Richard J. Skurkis, Md Ashabul Anam, Wonhee M. Kim
  • Publication number: 20220134425
    Abstract: A powder bed fusion system includes a powder bed including a build surface and a vacuum system. The vacuum system includes a collection device positioned over the build surface. The collection device includes a body, a pathway defined in the body, wherein the pathway ends in a passageway opening, and a particle retainer connected to the body near the passageway opening. A method of forming a component includes forming a layer of unfused metal powder on a powder bed with a recoater, introducing gas to the powder bed and applying a vacuum with a collection device, fusing a portion of the layer of unfused metal powder on the powder bed with a heat source to form a component layer and generating contaminants, collecting the contaminants from the powder bed with the gas and the vacuum applied by the collection device.
    Type: Application
    Filed: October 29, 2020
    Publication date: May 5, 2022
    Inventors: Md Ashabul Anam, Mark A. Smith, Tyson W. Brown, Richard J. Skurkis, HyungMin Chae, Whitney A. Poling
  • Publication number: 20220063198
    Abstract: A post-build powder removal system includes a work bed, a platform wall having at least one powder evacuation port, and an evacuation port sealing system operable for selectively closing and opening the powder evacuation port. The platform wall cooperates with the work bed to define a powder chamber. The evacuation port sealing system includes an external sleeve slidingly fitted onto the exterior surface of the platform wall such that the external sleeve is slideable in a first direction closing the at least one powder evacuation port and slideable in an opposite second direction opening the at least one powder evacuation port.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 3, 2022
    Inventors: Richard J. Skurkis, Whitney A. Poling, Mark A. Smith, Tyson W. Brown, MD Ashabul Anam, HyungMin Chae, Blair E. Carlson
  • Patent number: 11260542
    Abstract: A vacuum cup assembly and a method of lifting an object are provided. The vacuum cup assembly includes a cup structure defining an opening at a proximal end, a recess at a distal end, and a cavity region between the proximal and distal ends, where the cavity region includes at least one cavity. The opening is in fluid communication with the recess and with the cavity region. Inner structures are disposed in the cavity region. The inner structures are configured to hold the cup structure in a gripping position when a negative pressure is applied to the cavity region through the opening in the cup structure. The cup structure is configured to be in a resting position without the negative pressure being applied to the cavity region. The vacuum cup assembly has a first shape in the resting position and a second shape in the gripping position.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: March 1, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: HyungMin Chae, Wonhee M. Kim, Dooil Hwang
  • Publication number: 20210308759
    Abstract: A system and method for additive manufacturing are provided. The system includes a structure defining a chamber for manufacturing parts via additive manufacturing. A powder metal applicator is configured to deposit layers of powder metal material to build a part on a build platform. A laser source is configured to direct one or more laser beams onto each layer of powder metal material to fuse the powder metal material, wherein metal condensate is created by the laser beam(s) contacting the powder metal material. An element spaced apart from the layers of powder material has a temperature different than the chamber temperature, so that the element is configured to attract or repel the metal condensate by virtue of the temperature differential between the element and the chamber. The method includes using the element having the different temperature to attract or repel the metal condensate within the chamber.
    Type: Application
    Filed: April 7, 2020
    Publication date: October 7, 2021
    Inventors: Mark A. Smith, Tyson W. Brown, HyungMin Chae, Md Ashabul Anam, Whitney A. Poling, Richard J. Skurkis
  • Publication number: 20210206072
    Abstract: A configurable build volume system for a powder bed fusion manufacturing process includes a chamber wall defining a chamber, the chamber wall extending in the X-, Y-, and Z-axis directions, a plurality of build platforms enclosed within the chamber, a plurality of adjustment mechanisms coupled to the plurality of build platforms such that each build platform is coupled to a separate adjustment mechanism, a sensor mounted within the chamber and configured to capture data regarding a Z-axis position of each of the plurality of build platforms, and a controller in electronic communication with the plurality of adjustment mechanisms and the sensor. The controller receives the Z-axis position data and generates a plurality of control signals to adjust a Z-axis position of each of the plurality of build platforms and each of the plurality of build platforms is actively and independently controlled by the controller.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: HyungMin Chae, Mark A. Smith, Richard J. Skurkis, Whitney A. Poling
  • Patent number: 11007713
    Abstract: An additive manufacturing system includes a powder delivery system, an area scanning laser, a build chamber, and a controller. The powder delivery system provides a predetermined amount of powder material to the build chamber, and includes a material dispenser, a dispensing head, and a scraper. The scanning laser selectively sinters the powder material, and includes a mirror galvanometer for raster scanning. The build chamber has an annular configuration, and includes an inner annular wall that defines a central portion disposed inward of the build chamber. A portion of the delivery system and the laser are located in the central portion. The chamber continuously rotates under the head and under a sintering zone generated by the laser as the delivery system continuously dispenses the material. The laser continuously raster scans the material at the sintering zone in a raster pattern to sinter a layer of material directly to a preceding layer.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: May 18, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: John P Spicer, Jason J Nolte, Thomas A. Perry, Blair E Carlson, Anil K Sachdev, Hyungmin Chae, Mark A Smith
  • Publication number: 20210129353
    Abstract: A vacuum cup assembly and a method of lifting an object are provided. The vacuum cup assembly includes a cup structure defining an opening at a proximal end, a recess at a distal end, and a cavity region between the proximal and distal ends, where the cavity region includes at least one cavity. The opening is in fluid communication with the recess and with the cavity region. Inner structures are disposed in the cavity region. The inner structures are configured to hold the cup structure in a gripping position when a negative pressure is applied to the cavity region through the opening in the cup structure. The cup structure is configured to be in a resting position without the negative pressure being applied to the cavity region. The vacuum cup assembly has a first shape in the resting position and a second shape in the gripping position.
    Type: Application
    Filed: October 31, 2019
    Publication date: May 6, 2021
    Inventors: HyungMin Chae, Wonhee M. Kim, DOOIL HWANG
  • Patent number: 10919286
    Abstract: A powder bed fusion system includes a plurality of individual build chambers, with each individual build chamber including an area laser scanner optical device and a point laser scanner. A single, area beam delivery system and the plurality of build chambers are moveable relative to each other, such that the area beam delivery system may be positioned to provide an area scanning laser beam to any of the area laser scanner optical devices in any of the plurality of build chambers. The point laser scanners may be used to contour an edge of an object, and the area scanning laser beam may be used to fill in large areas of the object.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: February 16, 2021
    Assignee: GM Global Technology Operations LLC
    Inventors: HyungMin Chae, John P. Spicer, Mark A. Smith
  • Patent number: 10471508
    Abstract: Additive manufacturing systems, area scanning laser systems, and methods for performing an additive manufacturing process are provided. An exemplary additive manufacturing system includes a laser generation device for producing a laser beam. Further, the additive manufacturing system includes an optic element for forming a first portion of the laser beam with a first polarization and a second portion of the laser beam with a second polarization different from the first polarization to encode an image in the laser beam. Also, the additive manufacturing system includes a selective beam separator configured to direct the first portion of the laser beam onto a material to be sintered or melted. The additive manufacturing system includes a recycling system for receiving the second portion of the laser beam.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: November 12, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas A. Perry, Blair E. Carlson, Jason J. Nolte, Hyungmin Chae, John Patrick Spicer
  • Publication number: 20180311731
    Abstract: An additive manufacturing system has a powder delivery system for presenting a powder material to a build chamber. A laser selectively sinters the powder material in the build chamber. The build chamber is presented in an annular configuration with the powder delivery system and laser arranged within a central portion thereof.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 1, 2018
    Inventors: John P. SPICER, Jason J. NOLTE, Thomas A. PERRY, Blair E. Carlson, Anil K. SACHDEV, HyungMin CHAE, Mark A. SMITH
  • Publication number: 20180281065
    Abstract: Additive manufacturing systems, area scanning laser systems, and methods for performing an additive manufacturing process are provided. An exemplary additive manufacturing system includes a laser generation device for producing a laser beam. Further, the additive manufacturing system includes an optic element for forming a first portion of the laser beam with a first polarization and a second portion of the laser beam with a second polarization different from the first polarization to encode an image in the laser beam. Also, the additive manufacturing system includes a selective beam separator configured to direct the first portion of the laser beam onto a material to be sintered or melted. The additive manufacturing system includes a recycling system for receiving the second portion of the laser beam.
    Type: Application
    Filed: March 28, 2017
    Publication date: October 4, 2018
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: THOMAS A. PERRY, BLAIR E. CARLSON, JASON J. NOLTE, HYUNGMIN CHAE, JOHN PATRICK SPICER
  • Publication number: 20180200835
    Abstract: A powder bed fusion system includes a plurality of individual build chambers, with each individual build chamber including an area laser scanner optical device and a point laser scanner. A single, area beam delivery system and the plurality of build chambers are moveable relative to each other, such that the area beam delivery system may be positioned to provide an area scanning laser beam to any of the area laser scanner optical devices in any of the plurality of build chambers. The point laser scanners may be used to contour an edge of an object, and the area scanning laser beam may be used to fill in large areas of the object.
    Type: Application
    Filed: January 13, 2017
    Publication date: July 19, 2018
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: HyungMin Chae, John P. Spicer, Mark A. Smith