Patents by Inventor Hyungryul Johnny Choi

Hyungryul Johnny Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10478802
    Abstract: Titania-based porous nanoparticle coatings are mechanically robust, with low haze, which exhibit short time scales for decomposition of fingerprint oils under ultraviolet light. The mechanism by which a typical dactylogram is consumed combines wicking of the sebum into the nanoporous titania structure followed by photocatalytic degradation. These TiO2 nanostructured surfaces are also anti-fogging, anti-bacterial, and compatible with flexible glass substrates and remain photocatalytically active in natural sunlight.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: November 19, 2019
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Robert E. Cohen, Michael F. Rubner, Gareth H. McKinley, George Barbastathis, Hyungryul Johnny Choi, Kyu Chul Park, Hyo Min Lee
  • Publication number: 20140336039
    Abstract: Titania-based porous nanoparticle coatings are mechanically robust, with low haze, which exhibit short time scales for decomposition of fingerprint oils under ultraviolet light. The mechanism by which a typical dactylogram is consumed combines wicking of the sebum into the nanoporous titania structure followed by photocatalytic degradation. These TiO2 nanostructured surfaces are also anti-fogging, anti-bacterial, and compatible with flexible glass substrates and remain photocatalytically active in natural sunlight.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Robert E. COHEN, Michael F. RUBNER, Gareth H. MCKINLEY, George BARBASTATHIS, Hyungryul Johnny CHOI, Kyoo Chul PARK, Hyomin LEE
  • Publication number: 20130171738
    Abstract: A chemical sensor that works while being submerged in a highly conductive medium is described. The chemical sensor includes hydrophobic structures that are distributed on conductive electrodes and are separated by small air cavities while submerged in the conductive medium. The hydrophobic structures are arranged such that their hydrophobicity varies in response to exposure to a target analyte. The change in the level of hydrophobicity results in permeation of the conductive liquid on to the conductive electrodes, thereby reducing the resistance levels between the conductive electrodes. The sensor indicates presence of the target analyte in response to detection of a change in resistance between at least two of the conductive electrodes.
    Type: Application
    Filed: June 17, 2011
    Publication date: July 4, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Hyungryul Johnny Choi, Ayse Asatekin Alexiou, Se Young Yang, Christy D. Petruczok, Karen K. Gleason, Nicholas M. Patrikalakis, George Barbastathis