Patents by Inventor I. C. Edmond Turcu

I. C. Edmond Turcu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6977383
    Abstract: A method and apparatus for generating membrane targets for a laser induced plasma is disclosed herein. Membranes are advantageous targets for laser induced plasma because they are very thin and can be readily illuminated by high-power coherent light, such as a laser, and converted into plasma. Membranes are also advantageous because illumination of the membrane with coherent light produces less debris and splashing than illumination of a thicker, solid target. Spherical membranes possess additional advantages in that they can be readily illuminated from variety of directions and because they can be easily placed (i.e. blown) into a target region for illumination by coherent light. Membranes are also advantageous because they can be formed from a liquid or molten phase of the target material. According to another embodiment, membranes can be formed from a solution in which the target materials are solvated.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: December 20, 2005
    Assignee: JMAR Research, Inc.
    Inventors: Harry R. Rieger, I. C. Edmond Turcu, James Morris
  • Publication number: 20040200977
    Abstract: A method and apparatus for generating membrane targets for a laser induced plasma is disclosed herein. Membranes are advantageous targets for laser induced plasma because they are very thin and can be readily illuminated by high-power coherent light, such as a laser, and converted into plasma. Membranes are also advantageous because illumination of the membrane with coherent light produces less debris and splashing than illumination of a thicker, solid target. Spherical membranes possess additional advantages in that they can be readily illuminated from variety of directions and because they can be easily placed (i.e. blown) into a target region for illumination by coherent light. Membranes are also advantageous because they can be formed from a liquid or molten phase of the target material. According to another embodiment, membranes can be formed from a solution in which the target materials are solvated.
    Type: Application
    Filed: December 31, 2003
    Publication date: October 14, 2004
    Applicant: JMAR Research Inc.
    Inventors: Harry R. Rieger, I.C. Edmond Turcu, James Morris
  • Patent number: 6624431
    Abstract: The present invention provides a high gain collimator producing generally uniform intensity profiles for use in lithography and other applications. A focusing optic is also provided. The collimator includes a reflector and guide channel. The guide channel preferably includes polycapillary tubes and/or microchannel plates. The polycapillary tubes are used to collimate or focus the central portion of the x-ray beam in a circular, elliptic, square, or rectangular shape. A conical, parabolic resonance reflector or grazing incidence reflector with a shape similar to the polycapillary collimator is used to increase the solid angle collected and produce a circular, square, etc. annular x-ray beam whose inside dimensions are approximately equal to the exit dimensions of the polycapillary collimator.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: September 23, 2003
    Assignee: Jmar Research, Inc.
    Inventors: Richard M. Foster, I. C. Edmond Turcu
  • Patent number: 6389101
    Abstract: A parallel nanotomography imaging system is provided having an x-ray source, which is preferably a laser-based x-ray source that generates x-rays that are collected using a collector optic and are received in a composite objective assembly. The composite objective assembly includes plural micro-objectives, each imaging the target. The x-ray image is received by an x-ray image formation and acquisition apparatus, and processed and/or displayed.
    Type: Grant
    Filed: May 24, 2000
    Date of Patent: May 14, 2002
    Assignee: JMAR Research, Inc.
    Inventors: Zachary H. Levine, I. C. Edmond Turcu