Patents by Inventor I-Cheng Tung
I-Cheng Tung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250212441Abstract: Contacts to n-type and p-type source/drain regions of field-effect transistors comprise a doped contact metal layer positioned between the fill metal and the source/drain regions. The doped contact metal layer comprises a metal and a semiconductor dopant and is formed by reactive sputtering. By varying the concentration of a reactive gas comprising the dopant in the sputtering environment, the atomic composition of the dopant in the doped contact metal layer can vary as the doped contact metal layer is formed. The presence of doped contact metal layers in source/drain contacts can provide for thermally stable low resistance source/drain contacts by inhibiting dopant diffusion from the source/drain regions to the contact metal. In some embodiments, a non-doped contact metal layer can be positioned between the fill metal and the doped contact metal layer.Type: ApplicationFiled: December 20, 2023Publication date: June 26, 2025Applicant: Intel CorporationInventors: I-Cheng Tung, Arnab Sen Gupta, Christopher Jezewski, Gilbert Dewey, Ilya V. Karpov, Jin Jimmy Wang, Matthew V. Metz, Nancy Zelick, Nazila Haratipour, Siddharth Chouksey, Thoe Kathy Michaelos
-
Publication number: 20250212507Abstract: Contacts to n-type and p-type source/drain regions in complementary metal-oxide semiconductor (CMOS) technologies comprise a diffusion barrier layer positioned between the contact metal and the source/drain regions. The contact metal-diffusion barrier layer pairs used to contact n-type and p-type source/drain regions can comprise different materials. The contact metal layers used in n-type and p-type source/drain contacts can comprise the same or different materials. The presence of diffusion barrier layers can provide for thermally stable low resistance source/drain contacts by inhibiting dopant diffusion from the source/drain regions to the contact metal.Type: ApplicationFiled: December 20, 2023Publication date: June 26, 2025Applicant: Intel CorporationInventors: Gilbert Dewey, Nancy Zelick, Ilya V. Karpov, Christopher Jezewski, Siddharth Chouksey, Thoe Kathy Michaelos, Nazila Haratipour, Arnab Sen Gupta, I-Cheng Tung, Matthew V. Metz
-
Publication number: 20250140543Abstract: The present disclosure is directed to a high-voltage magnetron sputtering tool with an enhanced power source including a vacuum chamber containing a magnetron cathode with a magnet array, a target, and an anode, as well as the enhanced power source that includes high-power DC power source and controller that produces a pulsed output. In an aspect, the enhanced power source may include a standard power source that is retrofitted a supplemental high-power DC power source and controller, and alternatively, a high-power DC power source and controller that replaces the standard power source. In addition, the present disclosure is directed to methods for depositing a hydrogen-free diamond-like carbon film on a semiconductor substrate using the high-voltage magnetron sputtering tool. In an aspect, the hydrogen-free diamond-like carbon film may be an etch mask having a sp3 carbon bonding that is greater than 60 percent.Type: ApplicationFiled: November 1, 2023Publication date: May 1, 2025Inventors: Ilya KARPOV, Tristan TRONIC, Arnab SEN GUPTA, I-Cheng TUNG, Jin WANG, Matthew METZ, Eric MATTSON
-
Publication number: 20250133822Abstract: Integrated circuitry comprising a ribbon or wire (RoW) transistor stack within which the transistors have different threshold voltages (Vt). In some examples, a gate electrode of the transistor stack may include only one workfunction metal. A metal oxide may be deposited around one or more channels of the transistor stack as a solid-state source of a metal oxide species that will diffuse toward the channel region(s). As diffused, the metal oxide may remain (e.g., as a silicate, or hafnate) in close proximity to the channel region, thereby altering the dipole properties of the gate insulator material. Different channels of a transistor stack may be exposed to differing amounts or types of the metal oxide species to provide a range of Vt within the stack. After diffusion, the metal oxide may be stripped as sacrificial, or retained.Type: ApplicationFiled: December 24, 2024Publication date: April 24, 2025Applicant: Intel CorporationInventors: Nicole Thomas, Eric Mattson, Sudarat Lee, Scott B. Clendenning, Tobias Brown-Heft, I-Cheng Tung, Thoe Michaelos, Gilbert Dewey, Charles Kuo, Matthew Metz, Marko Radosavljevic, Charles Mokhtarzadeh
-
Patent number: 12255225Abstract: Low leakage thin film capacitors for decoupling, power delivery, integrated circuits, related systems, and methods of fabrication are disclosed. Such thin film capacitors include a titanium dioxide dielectric and one or more noble metal oxide electrodes. Such thin film capacitors are suitable for high voltage applications and provide low current density leakage.Type: GrantFiled: September 25, 2020Date of Patent: March 18, 2025Assignee: Intel CorporationInventors: Thomas Sounart, Kaan Oguz, Neelam Prabhu Gaunkar, Aleksandar Aleksov, Henning Braunisch, I-Cheng Tung
-
Publication number: 20250056812Abstract: The disclosure is directed to spin-orbit torque MRAM structures and methods. A SOT channel of the SOT-MRAM includes multiple heavy metal layers and one or more dielectric dusting layers each sandwiched between two adjacent heavy metal layers. The dielectric dusting layers each include discrete molecules or discrete molecule clusters of a dielectric material scattered in or adjacent to an interface between two adjacent heavy metal layers.Type: ApplicationFiled: October 30, 2024Publication date: February 13, 2025Inventors: Zong-You Luo, Ya-Jui Tsou, I-Cheng Tung, CheeWee Liu
-
Patent number: 12224309Abstract: Disclosed herein are capacitors including built-in electric fields, as well as related devices and assemblies. In some embodiments, a capacitor may include a top electrode region, a bottom electrode region, and a dielectric region between and in contact with the top electrode region and the bottom electrode region, wherein the dielectric region includes a perovskite material, and the top electrode region has a different material structure than the bottom electrode region.Type: GrantFiled: December 9, 2020Date of Patent: February 11, 2025Assignee: Intel CorporationInventors: Sou-Chi Chang, Chia-Ching Lin, Kaan Oguz, I-Cheng Tung, Uygar E. Avci, Matthew V. Metz, Ashish Verma Penumatcha, Ian A. Young, Arnab Sen Gupta
-
Publication number: 20250006839Abstract: A transistor device may include a first perovskite gate material, a first perovskite ferroelectric material on the first gate material, a first p-type perovskite semiconductor material on the first ferroelectric material, a second perovskite ferroelectric material on the first semiconductor material, a second perovskite gate material on the second ferroelectric material, a third perovskite ferroelectric material on the second gate material, a second p-type perovskite semiconductor material on the third ferroelectric material, a fourth perovskite ferroelectric material on the second semiconductor material, a third perovskite gate material on the fourth ferroelectric material, a first source/drain metal adjacent a first side of each of the first semiconductor material and the second semiconductor material, a second source/drain metal adjacent a second side opposite the first side of each of the first semiconductor material and the second semiconductor material, and dielectric materials between the source/drainType: ApplicationFiled: June 28, 2023Publication date: January 2, 2025Applicant: Intel CorporationInventors: Kevin P. O'Brien, Dmitri Evgenievich Nikonov, Rachel A. Steinhardt, Pratyush P. Buragohain, John J. Plombon, Hai Li, Gauri Auluck, I-Cheng Tung, Tristan A. Tronic, Dominique A. Adams, Punyashloka Debashis, Raseong Kim, Carly Rogan, Arnab Sen Gupta, Brandon Holybee, Marko Radosavljevic, Uygar E. Avci, Ian Alexander Young, Matthew V. Metz
-
Publication number: 20250006840Abstract: In one embodiment, a negative capacitance transistor device includes a perovskite semiconductor material layer with first and second perovskite conductors on opposite ends of the perovskite semiconductor material layer. The device further includes a dielectric material layer on the perovskite semiconductor material layer between the first and second perovskite conductors, a perovskite ferroelectric material layer on the dielectric material layer, and a third perovskite conductor on the perovskite ferroelectric material layer.Type: ApplicationFiled: June 29, 2023Publication date: January 2, 2025Applicant: INTEL CORPORATIONInventors: Rachel A. Steinhardt, Kevin P. O'Brien, Dmitri Evgenievich Nikonov, John J. Plombon, Tristan A. Tronic, Ian Alexander Young, Matthew V. Metz, Marko Radosavljevic, Carly Rogan, Brandon Holybee, Raseong Kim, Punyashloka Debashis, Dominique A. Adams, I-Cheng Tung, Arnab Sen Gupta, Gauri Auluck, Scott B. Clendenning, Pratyush P. Buragohain, Hai Li
-
Publication number: 20250008852Abstract: A two-terminal ferroelectric perovskite diode comprises a region of ferroelectric perovskite material positioned adjacent to a region of n-type doped perovskite semiconductor material. Asserting a positive voltage across the diode can cause the polarization of the ferroelectric perovskite material to be set in a first direction that causes the diode to be placed in a low resistance state due to the formation of an accumulation region in the perovskite semiconductor material at the ferroelectric perovskite-perovskite semiconductor boundary. Asserting a negative voltage across the diode can cause the polarization of the ferroelectric perovskite material to be set in a second direction that causes the diode to be placed in a high resistance state due to the formation of a depletion region in the perovskite semiconductor material at the ferroelectric perovskite-perovskite semiconductor material. These non-volatile low and high resistance states enable the diode to be used as a non-volatile memory element.Type: ApplicationFiled: July 1, 2023Publication date: January 2, 2025Applicant: Intel CorporationInventors: Punyashloka Debashis, Dominique A. Adams, Gauri Auluck, Scott B. Clendenning, Arnab Sen Gupta, Brandon Holybee, Raseong Kim, Matthew V. Metz, Kevin P. O'Brien, John J. Plombon, Marko Radosavljevic, Carly Rogan, Hojoon Ryu, Rachel A. Steinhardt, Tristan A. Tronic, I-Cheng Tung, Ian Alexander Young, Dmitri Evgenievich Nikonov
-
Publication number: 20250006841Abstract: Technologies for a field effect transistor (FET) with a ferroelectric gate dielectric are disclosed. In an illustrative embodiment, a transistor includes a gate of strontium ruthenate and a ferroelectric gate dielectric layer of barium titanate. In order to prevent migration of ruthenium from the strontium ruthenate to the barium titanate, a barrier layer is placed between the gate and the ferroelectric gate dielectric layer. The barrier layer may be a metal oxide, such as strontium oxide, barium oxide, zirconium oxide, etc.Type: ApplicationFiled: June 30, 2023Publication date: January 2, 2025Applicant: Intel CorporationInventors: Arnab Sen Gupta, Dmitri Evgenievich Nikonov, John J. Plombon, Rachel A. Steinhardt, Punyashloka Debashis, Kevin P. O'Brien, Matthew V. Metz, Scott B. Clendenning, Brandon Holybee, Marko Radosavljevic, Ian Alexander Young, I-Cheng Tung, Sudarat Lee, Raseong Kim, Pratyush P. Buragohain
-
Publication number: 20250006791Abstract: Perovskite oxide field effect transistors comprise perovskite oxide materials for the channel, source, drain, and gate oxide regions. The source and drain regions are doped with a higher concentration of n-type or p-type dopants (depending on whether the transistor is an n-type or p-type transistor) than the dopant concentration in the channel region to minimize Schottky barrier height between the source and drain regions and the source and drain metal contact and contact resistance.Type: ApplicationFiled: July 1, 2023Publication date: January 2, 2025Applicant: Intel CorporationInventors: Rachel A. Steinhardt, Kevin P. O'Brien, Dominique A. Adams, Gauri Auluck, Pratyush P. Buragohain, Scott B. Clendenning, Punyashloka Debashis, Arnab Sen Gupta, Brandon Holybee, Raseong Kim, Matthew V. Metz, John J. Plombon, Marko Radosavljevic, Carly Rogan, Tristan A. Tronic, I-Cheng Tung, Ian Alexander Young, Dmitri Evgenievich Nikonov
-
Patent number: 12183739Abstract: Integrated circuitry comprising a ribbon or wire (RoW) transistor stack within which the transistors have different threshold voltages (Vt). In some examples, a gate electrode of the transistor stack may include only one workfunction metal. A metal oxide may be deposited around one or more channels of the transistor stack as a solid-state source of a metal oxide species that will diffuse toward the channel region(s). As diffused, the metal oxide may remain (e.g., as a silicate, or hafnate) in close proximity to the channel region, thereby altering the dipole properties of the gate insulator material. Different channels of a transistor stack may be exposed to differing amounts or types of the metal oxide species to provide a range of Vt within the stack. After diffusion, the metal oxide may be stripped as sacrificial, or retained.Type: GrantFiled: December 18, 2020Date of Patent: December 31, 2024Assignee: Intel CorporationInventors: Nicole Thomas, Eric Mattson, Sudarat Lee, Scott B. Clendenning, Tobias Brown-Heft, I-Cheng Tung, Thoe Michaelos, Gilbert Dewey, Charles Kuo, Matthew Metz, Marko Radosavljevic, Charles Mokhtarzadeh
-
Publication number: 20240429301Abstract: A transistor device may be formed with a doped perovskite material as a channel region. The doped perovskite material may be formed via an epitaxial growth process from a seed layer, and the channel regions of the transistor device may be formed from lateral overgrowth from the epitaxial growth process.Type: ApplicationFiled: June 26, 2023Publication date: December 26, 2024Applicant: Intel CorporationInventors: Rachel A. Steinhardt, Dmitri Evgenievich Nikonov, Kevin P. O'Brien, John J. Plombon, Tristan A. Tronic, Ian Alexander Young, Matthew V. Metz, Marko Radosavljevic, Carly Rogan, Brandon Holybee, Raseong Kim, Punyashloka Debashis, Dominique A. Adams, I-Cheng Tung, Arnab Sen Gupta, Gauri Auluck, Scott B. Clendenning, Pratyush P. Buragohain
-
Patent number: 12170319Abstract: Embodiments disclosed herein include complementary metal-oxide-semiconductor (CMOS) devices and methods of forming CMOS devices. In an embodiment, a CMOS device comprises a first transistor with a first conductivity type, where the first transistor comprises a first source region and a first drain region, and a first metal over the first source region and the first drain region. In an embodiment, the CMOS device further comprises a second transistor with a second conductivity type opposite form the first conductivity type, where the second transistor comprises a second source region and a second drain region, a second metal over the second source region and the second drain region, and the first metal over the second metal.Type: GrantFiled: September 25, 2020Date of Patent: December 17, 2024Assignee: Intel CorporationInventors: Kevin Cook, Anand S. Murthy, Gilbert Dewey, Nazila Haratipour, Ralph Thomas Troeger, Christopher J. Jezewski, I-Cheng Tung
-
Patent number: 12160998Abstract: The disclosure is directed to spin-orbit torque MRAM structures and methods. A SOT channel of the SOT-MRAM includes multiple heavy metal layers and one or more dielectric dusting layers each sandwiched between two adjacent heavy metal layers. The dielectric dusting layers each include discrete molecules or discrete molecule clusters of a dielectric material scattered in or adjacent to an interface between two adjacent heavy metal layers.Type: GrantFiled: July 22, 2022Date of Patent: December 3, 2024Assignees: Taiwan Semiconductor Manufacturing Co., Ltd., National Taiwan UniversityInventors: Zong-You Luo, Ya-Jui Tsou, I-Cheng Tung, CheeWee Liu
-
Publication number: 20240373644Abstract: An integrated circuit capacitor structure, includes a first electrode includes a cylindrical column, a ferroelectric layer around an exterior sidewall of the cylindrical column and a plurality of outer electrodes. The plurality of outer electrodes include a first outer electrode laterally adjacent to a first portion of an exterior of the ferroelectric layer and a second outer electrode laterally adjacent to a second portion of the exterior of the ferroelectric layer, wherein the second outer electrode is above the first outer electrode.Type: ApplicationFiled: July 19, 2024Publication date: November 7, 2024Applicant: Intel CorporationInventors: Nazila Haratipour, Sou-Chi Chang, Shriram Shivaraman, I-Cheng Tung, Tobias Brown-Heft, Devin R. Merrill, Che-Yun Lin, Seung Hoon Sung, Jack Kavalieros, Uygar Avci, Matthew V. Metz
-
Patent number: 12100731Abstract: A capacitor device, such as a metal insulator metal (MIM) capacitor includes a seed layer including tantalum, a first electrode on the seed layer, where the first electrode includes at least one of ruthenium or iridium and an insulator layer on the seed layer, where the insulator layer includes oxygen and one or more of Sr, Ba or Ti. In an exemplary embodiment, the insulator layer is a crystallized layer having a substantially smooth surface. A crystallized insulator layer having a substantially smooth surface facilitates low electrical leakage in the MIM capacitor. The capacitor device further includes a second electrode layer on the insulator layer, where the second electrode layer includes a second metal or a second metal alloy.Type: GrantFiled: June 26, 2020Date of Patent: September 24, 2024Assignee: Intel CorporationInventors: Kaan Oguz, I-Cheng Tung, Chia-Ching Lin, Sou-Chi Chang, Matthew Metz, Uygar Avci
-
Patent number: 12048165Abstract: An integrated circuit capacitor structure, includes a first electrode includes a cylindrical column, a ferroelectric layer around an exterior sidewall of the cylindrical column and a plurality of outer electrodes. The plurality of outer electrodes include a first outer electrode laterally adjacent to a first portion of an exterior of the ferroelectric layer and a second outer electrode laterally adjacent to a second portion of the exterior of the ferroelectric layer, wherein the second outer electrode is above the first outer electrode.Type: GrantFiled: June 26, 2020Date of Patent: July 23, 2024Assignee: Intel CorporationInventors: Nazila Haratipour, Sou-Chi Chang, Shriram Shivaraman, I-Cheng Tung, Tobias Brown-Heft, Devin R. Merrill, Che-Yun Lin, Seung Hoon Sung, Jack Kavalieros, Uygar Avci, Matthew V. Metz
-
Patent number: 11980037Abstract: Described herein are ferroelectric (FE) memory cells that include transistors having gate stacks separate from FE capacitors of these cells. An example memory cell may be implemented as an IC device that includes a support structure (e.g., a substrate) and a transistor provided over the support structure and including a gate stack. The IC device also includes a FE capacitor having a first capacitor electrode, a second capacitor electrode, and a capacitor insulator of a FE material between the first capacitor electrode and the second capacitor electrode, where the FE capacitor is separate from the gate stack (i.e., is not integrated within the gate stack and does not have any layers that are part of the gate stack). The IC device further includes an interconnect structure, configured to electrically couple the gate stack and the first capacitor electrode.Type: GrantFiled: June 19, 2020Date of Patent: May 7, 2024Assignee: Intel CorporationInventors: Nazila Haratipour, Shriram Shivaraman, Sou-Chi Chang, Jack T. Kavalieros, Uygar E. Avci, Chia-Ching Lin, Seung Hoon Sung, Ashish Verma Penumatcha, Ian A. Young, Devin R. Merrill, Matthew V. Metz, I-Cheng Tung