Patents by Inventor I-Cheng Tung

I-Cheng Tung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113212
    Abstract: Technologies for a field effect transistor (FET) with a ferroelectric gate dielectric are disclosed. In an illustrative embodiment, a perovskite stack is grown on a buffer layer as part of manufacturing a transistor. The perovskite stack includes one or more doped semiconductor layers alternating with other lattice-matched layers, such as undoped semiconductor layers. Growing the doped semiconductor layers on lattice-matched layers can improve the quality of the doped semiconductor layers. The lattice-matched layers can be preferentially etched away, leaving the doped semiconductor layers as fins for a ribbon FET. In another embodiment, an interlayer can be deposited on top of a semiconductor layer, and a ferroelectric layer can be deposited on the interlayer. The interlayer can bridge a gap in lattice parameters between the semiconductor layer and the ferroelectric layer.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Hai Li, Arnab Sen Gupta, Gauri Auluck, I-Cheng Tung, Brandon Holybee, Rachel A. Steinhardt, Punyashloka Debashis
  • Publication number: 20240105810
    Abstract: In one embodiment, transistor device includes a first source or drain material on a substrate, a semiconductor material on the first source or drain material, a second source or drain material on the semiconductor material, a dielectric layer on the substrate and adjacent the first source or drain material, a ferroelectric (FE) material on the dielectric layer and adjacent the semiconductor material, and a gate material on or adjacent to the FE material. The FE material may be a perovskite material and may have a lattice parameter that is less than a lattice parameter of the semiconductor material.
    Type: Application
    Filed: September 23, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Rachel A. Steinhardt, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Arnab Sen Gupta, Brandon Holybee, Punyashloka Debashis, I-Cheng Tung, Gauri Auluck
  • Publication number: 20240105508
    Abstract: Disclosed herein are integrated circuit (IC) devices with contacts using nitridized molybdenum. For example, a contact arrangement for an IC device may include a semiconductor material and a contact extending into a portion of the semiconductor material. The contact may include molybdenum. The molybdenum may be in a first layer and a second layer, where the second layer may further include nitrogen. The first layer may have a thickness between about 5 nanometers and 16 nanometers, and the second layer may have a thickness between about 0.5 nanometers to 2.5 nanometers. The contact may further include a fill material (e.g., an electrically conductive material) and the second layer may be in contact with the fill material. The molybdenum may have a low resistance, and thus may improve the electrical performance of the contact. The nitridized molybdenum may prevent oxidation during the fabrication of the contact.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Jitendra Kumar Jha, Justin Mueller, Nazila Haratipour, Gilbert W. Dewey, Chi-Hing Choi, Jack T. Kavalieros, Siddharth Chouksey, Nancy Zelick, Jean-Philippe Turmaud, I-Cheng Tung, Blake Bluestein
  • Publication number: 20240097031
    Abstract: In one embodiment, a transistor device includes a gate material layer on a substrate, a ferroelectric (FE) material layer on the gate material, a semiconductor channel material layer on the FE material layer, a first source/drain material on the FE material layer and adjacent the semiconductor channel material layer, and a second source/drain material on the FE material layer and adjacent the semiconductor channel material layer and on an opposite side of the semiconductor channel material layer from the first source/drain material. A first portion of the FE material layer is directly between the gate material and the first source/drain material, and a second portion of the FE material layer is directly between the gate material and the second source/drain material.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Rachel A. Steinhardt, Brandon Holybee, Kevin P. O'Brien, Dmitri Evgenievich Nikonov, John J. Plombon, Ian Alexander Young, Raseong Kim, Carly Rogan, Dominique A. Adams, Arnab Sen Gupta, Marko Radosavljevic, Scott B. Clendenning, Gauri Auluck, Hai Li, Matthew V. Metz, Tristan A. Tronic, I-Cheng Tung
  • Publication number: 20240006506
    Abstract: Contacts to n-type source/drain regions comprise a phosphide or arsenide metal compound layer. The phosphide or arsenide metal compound layers can aid in forming thermally stable low resistance contacts. A phosphide or arsenide metal compound layer is positioned between the source/drain region and the contact metal layer of the contact. A phosphide or arsenic metal compound layer can be used in contacts contacting n-type source/drain regions comprising phosphorous or arsenic as the primary dopant, respectively. The phosphide or arsenide metal compound layers prevent diffusion of phosphorous or arsenic from the source/drain region into the metal contact layer and dopant deactivation in the source/drain region due to annealing and other high-temperature processing steps that occur after contact formation.
    Type: Application
    Filed: July 2, 2022
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Gilbert Dewey, Siddharth Chouksey, Nazila Haratipour, Christopher Jezewski, Jitendra Kumar Jha, Ilya V. Karpov, Jack T. Kavalieros, Arnab Sen Gupta, I-Cheng Tung, Nancy Zelick, Chi-Hing Choi, Dan S. Lavric
  • Publication number: 20240006533
    Abstract: Contacts to p-type source/drain regions comprise a boride, indium, or gallium metal compound layer. The boride, indium, or gallium metal compound layers can aid in forming thermally stable low resistance contacts. A boride, indium, or gallium metal compound layer is positioned between the source/drain region and the contact metal layer. A boride, indium, or gallium metal compound layer can be used in contacts contacting p-type source/drain regions comprising boron, indium, or gallium as the primary dopant, respectively. The boride, indium, or gallium metal compound layers prevent diffusion of boron, indium, or gallium from the source/drain region into the metal contact layer and dopant deactivation in the source/drain region due to annealing and other high-temperature processing steps that occur after contact formation.
    Type: Application
    Filed: July 2, 2022
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Gilbert Dewey, Siddharth Chouksey, Nazila Haratipour, Christopher Jezewski, Jitendra Kumar Jha, Ilya V. Karpov, Matthew V. Metz, Arnab Sen Gupta, I-Cheng Tung, Nancy Zelick, Chi-Hing Choi, Dan S. Lavric
  • Publication number: 20240006494
    Abstract: Semiconductor structures having a source and/or drain with a refractory metal cap, and methods of forming the same, are described herein. In one example, a semiconductor structure includes a channel, a gate, a source, and a drain. The source and drain contain silicon and germanium, and one or both of the source and drain are capped with a semiconductor cap and a refractory metal cap. The semiconductor cap is on the source and/or drain and contains germanium and boron. The refractory metal cap is on the semiconductor cap and contains a refractory metal.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, Gilbert Dewey, Nancy Zelick, Siddharth Chouksey, I-Cheng Tung, Arnab Sen Gupta, Jitendra Kumar Jha, Chi-Hing Choi, Matthew V. Metz, Jack T. Kavalieros
  • Publication number: 20240006488
    Abstract: In one embodiment, layers comprising Carbon (e.g., Silicon Carbide) are on source/drain regions of a transistor, e.g., before gate formation and metallization, and the layers comprising Carbon are later removed in the manufacturing process to form electrical contacts on the source/drain regions.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 4, 2024
    Applicant: Intel Corporation
    Inventors: Nazila Haratipour, Gilbert Dewey, Nancy Zelick, Siddharth Chouksey, I-Cheng Tung, Arnab Sen Gupta, Jitendra Kumar Jha, David Kohen, Natalie Briggs, Chi-Hing Choi, Matthew V. Metz, Jack T. Kavalieros
  • Publication number: 20230411278
    Abstract: Metal insulator metal capacitors are described. In an example, a metal-insulator-metal (MIM) capacitor includes a first electrode that includes a bottom region and a pair of vertical regions. First metal layers are outside the vertical regions and in contact with the vertical regions. An insulator is over the first electrode. A second electrode is over the insulator. A second metal layer is on a top surface of the second electrode.
    Type: Application
    Filed: March 31, 2023
    Publication date: December 21, 2023
    Inventors: Chia-Ching LIN, Sou-Chi CHANG, Kaan OGUZ, Arnab SEN GUPTA, I-Cheng TUNG, Matthew V. METZ, Sudarat LEE, Scott B. CLENDENNING, Uygar E. AVCI, Aaron J. WELSH
  • Publication number: 20230411443
    Abstract: Metal insulator metal capacitors are described. In an example, a metal-insulator-metal (MIM) capacitor includes a first electrode. An insulator is over the first electrode. The insulator includes a first layer, and a second layer over the first layer. The first layer has a leakage current that is less than a leakage current of the second layer. The second layer has a dielectric constant that is greater than a dielectric constant of the first layer. A second electrode is over the insulator.
    Type: Application
    Filed: March 31, 2023
    Publication date: December 21, 2023
    Inventors: Kaan OGUZ, Chia-Ching LIN, Arnab SEN GUPTA, I-Cheng TUNG, Sou-Chi CHANG, Sudarat LEE, Matthew V. METZ, Uygar E. AVCI, Scott B. CLENDENNING, Ian A. YOUNG
  • Patent number: 11777029
    Abstract: A vertical transistor structure includes a material stack having a source material, a drain material, and a channel material therebetween. The vertical transistor structure further includes a gate electrode adjacent to a sidewall of the stack, where the sidewall includes the channel material, and at least a partial thickness of both the source material and the drain material. A gate dielectric is present between the sidewall of the stack and the gate electrode. The vertical transistor structure further includes a first metallization over a first area of the stack above the gate dielectric layer, and in contact with the gate electrode on sidewall of the stack. A second metallization is adjacent to the first metallization, where the second metallization is over a second area of the stack, and in contact with the source material or the drain material.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: October 3, 2023
    Assignee: Intel Corporation
    Inventors: Nazila Haratipour, I-Cheng Tung, Abhishek A. Sharma, Arnab Sen Gupta, Van Le, Matthew V. Metz, Jack Kavalieros, Tahir Ghani
  • Patent number: 11742407
    Abstract: A integrated circuit structure comprises a fin extending from a substrate. The fin comprises source and drain regions and a channel region between the source and drain regions. A multilayer high-k gate dielectric stack comprises at least a first high-k material and a second high-k material, the first high-k material extending conformally over the fin over the channel region, and the second high-k material conformal to the first high-k material, wherein either the first high-k material or the second high-k material has a modified material property different from the other high-k material, wherein the modified material property comprises at least one of ferroelectricity, crystalline phase, texturing, ordering orientation of the crystalline phase or texturing to a specific crystalline direction or plane, strain, surface roughness, and lattice constant and combinations thereof. A gate electrode ix over and on a topmost high-k material in the multilayer high-k gate dielectric stack.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: August 29, 2023
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Ashish Verma Penumatcha, Sou-Chi Chang, Devin Merrill, I-Cheng Tung, Nazila Haratipour, Jack T. Kavalieros, Ian A. Young, Matthew V. Metz, Uygar E. Avci, Chia-Ching Lin, Owen Loh, Shriram Shivaraman, Eric Charles Mattson
  • Publication number: 20230253444
    Abstract: Described herein are capacitor devices formed using perovskite insulators. In one example, a perovskite templating material is formed over an electrode, and a perovskite insulator layer is grown over the templating material. The templating material improves the crystal structure and electrical properties in the perovskite insulator layer. One or both electrodes may be ruthenium. In another example, a perovskite insulator layer is formed between two layers of indium tin oxide (ITO), with the ITO layers forming the capacitor electrodes.
    Type: Application
    Filed: February 8, 2022
    Publication date: August 10, 2023
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, Kaan Oguz, Chia-Ching Lin, I-Cheng Tung, Sudarat Lee, Sou-Chi Chang, Matthew V. Metz, Scott B. Clendenning, Uygar E. Avci, Ian A. Young, Jason C. Retasket, Edward O. Johnson, JR.
  • Publication number: 20230197804
    Abstract: Contact over active gate (COAG) structures with trench contact layers, and methods of fabricating contact over active gate (COAG) structures using trench contact layers, are described. In an example, an integrated circuit structure includes a gate structure. An epitaxial source or drain structure is adjacent to the gate structure. A conductive trench contact structure is on the epitaxial source or drain structure. The conductive trench contact structure includes a first planar layer on the epitaxial source or drain structure, a second planar layer on the first planar layer, and a conductive fill material on the second planar layer.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 22, 2023
    Inventors: Nazila HARATIPOUR, Gilbert DEWEY, I-Cheng TUNG, Nancy ZELICK, Chi-Hing CHOI, Jitendra Kumar JHA, Jack T. KAVALIEROS
  • Publication number: 20230197728
    Abstract: An integrated circuit includes a lower and upper device portions including bodies of semiconductor material extending horizontally between first source and drain regions in a spaced-apart vertical stack. A first gate structure is around a body in the lower device portion and includes a first gate electrode and a first gate dielectric. A second gate structure is around a body in the upper device portion and includes a second gate electrode and a second gate dielectric, where the first gate dielectric is compositionally distinct from the second gate dielectric. In some embodiments, a dipole species has a first concentration in the first gate dielectric and a different second concentration in the second gate dielectric. A method of fabrication is also disclosed.
    Type: Application
    Filed: December 17, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Nicole K. Thomas, Eric Mattson, Sudarat Lee, Sarah Atanasov, Christopher J. Jezewski, Charles Mokhtarzadeh, Thoe Michaelos, I-Cheng Tung, Charles C. Kuo, Scott B. Clendenning, Matthew V. Metz
  • Publication number: 20230197777
    Abstract: Techniques are provided herein to form gate-all-around (GAA) semiconductor devices utilizing a metal fill in an epi region of a stacked transistor configuration. In one example, an n-channel device and the p-channel device may both be GAA transistors each having any number of nanoribbons extending in the same direction where the n-channel device is located vertically above the p-channel device (or vice versa). Source or drain regions are adjacent to both ends of the n-channel device and the p-channel device. A metal fill may be provided around the source or drain region of the bottom semiconductor device to provide a high contact area between the highly conductive metal fill and the epitaxial material of that source or drain region. Metal fill may also be used around the top source or drain region to further improve conductivity throughout both of the stacked source or drain regions.
    Type: Application
    Filed: December 20, 2021
    Publication date: June 22, 2023
    Applicant: Intel Corporation
    Inventors: Gilbert Dewey, Cheng-Ying Huang, Nicole K. Thomas, Marko Radosavljevic, Patrick Morrow, Ashish Agrawal, Willy Rachmady, Nazila Haratipour, Seung Hoon Sung, I-Cheng Tung, Christopher M. Neumann, Koustav Ganguly, Subrina Rafique
  • Publication number: 20230098594
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related MIM capacitors that have a multiple trench structure to increase a charge density, where a dielectric of the MIM capacitor includes a perovskite-based material. In embodiments, a first electrically conductive layer may be coupled with a top metal layer of the MIM, and/or a second conductive layer may be coupled with a bottom metal layer of the MIM to reduce RC effects. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Chia-Ching LIN, Kaan OGUZ, Sou-Chi CHANG, Arnab SEN GUPTA, I-Cheng TUNG, Ian A. YOUNG, Matthew V. METZ, Uygar E. AVCI, Sudarat LEE
  • Publication number: 20230100505
    Abstract: Embodiments disclosed herein include transistor devices and methods of forming such devices. In an embodiment, a transistor device comprises a first channel, wherein the first channel comprises a semiconductor material and a second channel above the first channel, wherein the second channel comprises the semiconductor material. In an embodiment, a first spacer is between the first channel and the second channel, and a second spacer is between the first channel and the second channel. In an embodiment, a first gate dielectric is over a surface of the first channel that faces the second channel, and a second gate dielectric is over a surface of the second channel that faces the first channel. In an embodiment, the first gate dielectric is physically separated from the second gate dielectric.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Ashish Verma PENUMATCHA, Sarah ATANASOV, Seung Hoon SUNG, Rahul RAMAMURTHY, I-Cheng TUNG, Uygar E. AVCI, Matthew V. METZ, Jack T. KAVALIEROS, Chia-Ching LIN, Kaan OGUZ
  • Publication number: 20230100952
    Abstract: Embodiments disclosed herein include transistors and transistor gate stacks. In an embodiment, a transistor gate stack comprises a semiconductor channel. In an embodiment, an interlayer (IL) is over the semiconductor channel. In an embodiment, the IL has a thickness of 1 nm or less and comprises zirconium. In an embodiment, a gate dielectric is over the IL, and a gate metal over the gate dielectric.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: I-Cheng TUNG, Ashish Verma PENUMATCHA, Seung Hoon SUNG, Sarah ATANASOV, Jack T. KAVALIEROS, Matther V. METZ, Uygar E. AVCI, Rahul RAMAMURTHY, Chia-Ching LIN, Kaan OGUZ
  • Publication number: 20230102177
    Abstract: Embodiments described herein may be related to apparatuses, processes, and techniques related to stacked MIM capacitors with multiple metal and dielectric layers that include insulating spacers on edges of one or more of the multiple layers to prevent unintended electrical coupling between metal layers during manufacturing. The dielectric layers may include Perovskite-based materials. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Inventors: Chia-Ching LIN, Sou-Chi CHANG, Kaan OGUZ, I-Cheng TUNG, Arnab SEN GUPTA, Ian A. YOUNG, Uygar E. AVCI, Matthew V. METZ