Patents by Inventor Iain Brooks

Iain Brooks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100028714
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Application
    Filed: October 8, 2009
    Publication date: February 4, 2010
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20090298624
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Application
    Filed: August 6, 2009
    Publication date: December 3, 2009
    Applicant: Integran Technologies Inc.
    Inventors: Gino PALUMBO, IAIN BROOKS, KONSTANTINOS PANAGIOTOPOULOS, KLAUS TOMANTSCHGER, JONATHAN McCREA, DAVID LIMOGES, UWE ERB
  • Patent number: 7591745
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: September 22, 2009
    Assignee: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Iain Brooks, Konstantinos Panagiotopoulos, Klaus Tomantschger, Jonathan McCrea, Dave Limoges, Uwe Erb
  • Patent number: 7553553
    Abstract: Lightweight articles comprising a polymeric material at least partially coated with a fine-grained metallic material are disclosed. The fine-grained metallic material has an average grain size of 2 nm to 5,000 nm, a thickness between 25 micron and 5 cm, and a hardness between 200 VHN and 3,000 VHN. The lightweight articles are strong and ductile and exhibit high coefficients of restitution and a high stiffness and are particularly suitable for a variety of applications including aerospace and automotive parts, sporting goods, and the like.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: June 30, 2009
    Assignee: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb, Andrew Wang
  • Publication number: 20090159451
    Abstract: Variable property deposit, at least partially of fine-grained metallic material, optionally containing solid particulates dispersed therein, is disclosed. The electrodeposition conditions in a single plating cell are suitably adjusted to once or repeatedly vary at least one property in the deposit direction. In one embodiment denoted multidimension grading, property variation along the length and/or width of the deposit is also provided. Variable property metallic material deposits containing at least in part a fine-grained microstructure and variable property in the deposit direction and optionally multidimensionally, provide superior overall mechanical properties compared to monolithic fine-grained (average grain size: 2 nm-5 micron), entirely coarse-grained (average grain size: >20 micron) or entirely amorphous metallic material deposits.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Applicant: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Glenn Hibbard, Gino Palumbo, Iain Brooks, Jonathan McCrea, Fred Smith
  • Publication number: 20080254310
    Abstract: Lightweight articles comprising a polymeric material at least partially coated with a fine-grained metallic material are disclosed. The fine-grained metallic material has an average grain size of 2 nm to 5,000 nm, a thickness between 25 micron and 5 cm, and a hardness between 200 VHN and 3,000 VHN. The lightweight articles are strong and ductile and exhibit high coefficients of restitution and a high stiffness and are particularly suitable for a variety of applications including aerospace and automotive parts, sporting goods, and the like.
    Type: Application
    Filed: June 11, 2008
    Publication date: October 16, 2008
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb, Andrew Wang
  • Patent number: 7387578
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: June 17, 2008
    Assignee: Integran Technologies Inc.
    Inventors: Gino Palumbo, Iain Brooks, Konstantinos Panagiotopoulos, Klaus Tomantschger, Jonathan McCrea, David Limoges, Uwe Erb
  • Publication number: 20080119307
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Application
    Filed: December 14, 2007
    Publication date: May 22, 2008
    Applicant: Integran Technologies Inc.
    Inventors: Gino Palumbo, Iain Brooks, Konstantinos Panagiotopoulos, Klaus Tomantschger, Jonathan McCrea, Dave Limoges, Uwe Erb
  • Publication number: 20080107805
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Application
    Filed: November 26, 2007
    Publication date: May 8, 2008
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Dachyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20080090066
    Abstract: Lightweight articles comprising a polymeric material at least partially coated with a fine-grained metallic material are disclosed. The fine-grained metallic material has an average grain size of 2 nm to 5,000 nm, a thickness between 25 micron and 5 cm, and a hardness between 200 VHN and 3,000 VHN. The lightweight articles are strong and ductile and exhibit high coefficients of restitution and a high stiffness and are particularly suitable for a variety of applications including aerospace and automotive parts, sporting goods, and the like.
    Type: Application
    Filed: December 12, 2007
    Publication date: April 17, 2008
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb, Andrew Wang
  • Patent number: 7354354
    Abstract: Lightweight articles comprising a polymeric material at least partially coated with a fine-grained metallic material are disclosed. The fine-grained metallic material has an average grain size of 2 nm to 5,000 nm, a thickness between 25 micron and 5 cm, and a hardness between 200 VHN and 3,000 VHN. The lightweight articles are strong and ductile and exhibit high coefficients of restitution and a high stiffness and are particularly suitable for a variety of applications including aerospace and automotive parts, sporting goods, and the like.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: April 8, 2008
    Assignee: Integran Technologies Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb, Andrew Wang
  • Patent number: 7320832
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: January 22, 2008
    Assignee: Integran Technologies Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20070281176
    Abstract: Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
    Type: Application
    Filed: December 9, 2005
    Publication date: December 6, 2007
    Applicant: Integtan Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20060160636
    Abstract: A sports article includes a portion that includes a nanostructured material. The nanostructured material includes a metal, and the nanostructured material has an average grain size that is in the range of 2 nm to 5,000 nm, a yield strength that is in the range of 200 MPa to 2,750 MPa, and a hardness that is in the range of 100 Vickers to 2,000 Vickers. The sports article can be any of a variety of sports equipment and associated components, such as a golf club, a baseball bat, a softball bat, a lacrosse stick, or a hockey stick.
    Type: Application
    Filed: December 16, 2005
    Publication date: July 20, 2006
    Inventors: Gino Palumbo, William Davidson, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20060135281
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 22, 2006
    Applicant: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Gino Palumbo, Iain Brooks, Konstantinos Panagiotopoulos, Klaus Tomantschger, Jonathan McCrea, David Limoges, Uwe Erb
  • Publication number: 20060135282
    Abstract: Lightweight articles comprising a polymeric material at least partially coated with a fine-grained metallic material are disclosed. The fine-grained metallic material has an average grain size of 2 nm to 5,000 nm, a thickness between 25 micron and 5 cm, and a hardness between 200 VHN and 3,000 VHN. The lightweight articles are strong and ductile and exhibit high coefficients of restitution and a high stiffness and are particularly suitable for a variety of applications including aerospace and automotive parts, sporting goods, and the like.
    Type: Application
    Filed: December 15, 2005
    Publication date: June 22, 2006
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb, Andrew Wang
  • Publication number: 20050205425
    Abstract: The invention relates to a process for forming coatings or free-standing deposits of nano-crystalline metals, metal alloys or metal matrix composites. The process employs drum plating or selective plating processes involving pulse electrode-position and a non-stationary anode or cathode. Novel nano-crystalline metal matrix composites and micro components are disclosed as well. Also described is a process for forming micro-components with grain sizes below 1,000 nm.
    Type: Application
    Filed: June 25, 2002
    Publication date: September 22, 2005
    Applicant: Integran Technologies
    Inventors: Gino Palumbo, Iain Brooks, Jonathan McCrea, Glenn Hibbard, Francisco Gonzalez, Klaus Tomantschger, Uwe Erb
  • Publication number: 20030234181
    Abstract: A process for in situ electroforming a structural reinforcing layer of selected metallic material for repairing an external surface area of a degraded section of metallic workpieces, especially of tubes and tube sections, is described. Preferably, the metal layer coatings are made of fine-grained metals, metal alloys or metal matrix composites. The plating system can be used on straight tubes, tube joints to different diameter tubes or face plates, tube elbows and other complex shapes encountered in piping systems. A suitable apparatus is assembled on or near the degraded site and is sealed in place to form the plating cell. Also described is a process for plating “patches” onto degraded areas by selective plating including brush plating.
    Type: Application
    Filed: October 24, 2002
    Publication date: December 25, 2003
    Inventors: Gino Palumbo, Iain Brooks, Andrew J. Robertson, Konstantinos Panagiotopoulos, Francisco Gonzalez, Klaus Tomantschger