Patents by Inventor Iain McFadyen

Iain McFadyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210269830
    Abstract: The invention relates to mRNA therapy for the treatment of galactosemia type 1 (Gal-1). mRNAs for use in the invention, when administered in vivo, encode human galactose-1-phosphate uridylyltransferase (GALT), isoforms thereof, functional fragments thereof, and fusion proteins comprising GALT. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GALT expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GALT activity in subjects, namely galactose-1-phosphate (Gal-1-P).
    Type: Application
    Filed: January 21, 2021
    Publication date: September 2, 2021
    Applicant: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Ding An, Staci Sabnis
  • Publication number: 20210268086
    Abstract: The disclosure relates to optimized cancer vaccines, as well as methods of making the vaccines, using the vaccines, and compositions comprising the vaccines. The cancer vaccines comprise personalized cancer antigens or portions of cancer hotspot antigens. Additionally, the disclosure relates to a computerized system for selecting nucleic acids to include in an optimized cancer vaccine.
    Type: Application
    Filed: June 27, 2019
    Publication date: September 2, 2021
    Applicant: ModernaTX, Inc.
    Inventors: Shan Zhong, Benjamin Breton, Iain Mcfadyen, Kristen Hopson, Vincent Luczkow, Maija Garnaas
  • Patent number: 11071716
    Abstract: The disclosure relates to compositions and methods for the preparation, manufacture and therapeutic use of combinations of immunomodulatory polynucleotides (e.g., mRNAs) encoding an immune response primer polypeptide (e.g., an interleukin 23 (IL-23) polypeptide or an interleukin 36? (IL-36-gamma) polypeptide), and an immune response co-stimulatory signal polypeptide (e.g., an OX40L polypeptide).
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: July 27, 2021
    Assignee: ModernaTX, Inc.
    Inventors: Joshua Frederick, Ailin Bai, Vladimir Presnyak, Stephen G. Hoge, Kerry Benenato, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Susannah Hewitt
  • Publication number: 20210217484
    Abstract: Techniques for manufacturing a variant of a target protein. The techniques may include accessing a latent variable statistical model (LVSM) configured to generate output indicating one or more biological sequences corresponding to one or more variants of the target protein and using the LVSM to generate a first output indicating a first biological sequence associated with a first variant of the target protein. The techniques further include manufacturing, using the first biological sequence, a first biological molecule to produce the first variant of the target protein.
    Type: Application
    Filed: January 8, 2021
    Publication date: July 15, 2021
    Applicant: ModernaTX, Inc.
    Inventors: Andrew Giessel, Athanasios Dousis, Iain McFadyen
  • Publication number: 20210206818
    Abstract: The invention features isolated mRNAs encoding at least one intracellular binding domain, including mRNAs comprising one or more modified nucleobase and preferably lacking an encoded scaffold polypeptide, and methods of using the same, for example, for inducing apoptosis and/or treating cancer (e.g., liver cancer or colorectal cancer).
    Type: Application
    Filed: January 20, 2017
    Publication date: July 8, 2021
    Inventors: Eric Yi-Chun HUANG, Joshua P. FREDERICK, Kristine MCKINNEY, Christina HENDERSON, Kahlin CHEUNG-ONG, Joseph BOLEN, Stephen Michael KELSEY, Michael MORIN, Sushma GURUMURTHY, Kerry BENENATO, Stephen HOGE, Iain MCFADYEN, Vladimir PRESNYAK
  • Patent number: 11000573
    Abstract: The present disclosure relates to polynucleotides comprising an open reading frame of linked nucleosides encoding human interleukin-12 (IL12), functional fragments thereof, and fusion proteins comprising IL12. In some embodiments, the open reading frame is sequence-optimized. In particular embodiments, the disclosure provides sequence-optimized polynucleotides comprising nucleotides encoding the polypeptide sequence of human IL12, or sequences having high sequence identity with those sequence optimized polynucleotides.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: May 11, 2021
    Assignee: ModernaTX, Inc.
    Inventors: Joshua Frederick, Susannah Hewitt, Ailin Bai, Stephen Hoge, Vladimir Presnyak, Iain McFadyen, Kerry Benenato, Ellalahewage Sathyajith Kumarasinghe
  • Patent number: 11001861
    Abstract: The invention relates to mRNA therapy for the treatment of galactosemia type 1 (Gal-1). mRNAs for use in the invention, when administered in vivo, encode human galactose-1-phosphate uridylyltransferase (GALT), isoforms thereof, functional fragments thereof, and fusion proteins comprising GALT. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GALT expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GALT activity in subjects, namely galactose-1-phosphate (Gal-1-P).
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: May 11, 2021
    Assignee: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Ding An, Staci Sabnis
  • Patent number: 10993918
    Abstract: The invention relates to mRNA therapy for the treatment of Citrullinemia Type 2 (“CTLN2”). mRNAs for use in the invention, when administered in vivo, encode human Citrin, isoforms thereof, functional fragments thereof, and fusion proteins comprising Citrin. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of Citrin expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of biomarkers associated with deficient Citrin activity in subjects, namely ammonia and/or triglycerides.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: May 4, 2021
    Assignee: ModernaTX, Inc.
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Jingsong Cao, Lin Tung Guey, Staci Sabnis
  • Patent number: 10973917
    Abstract: The present disclosure relates to the use of nucleic acid (e.g., mRNA) combination therapies for the treatment of cancer. The disclosure provides compositions, and methods for their preparation, manufacture, and therapeutic use, wherein those compositions comprise at least two polynucleotides (e.g., mRNAs) in combination wherein the at least two polynucleotides are selected from the group consisting of (i) a polynucleotide encoding an immune response primer (e.g., IL23), (ii) a polynucleotide encoding an immune response co-stimulatory signal (e.g., OX40L), (iii) a polynucleotide encoding a checkpoint inhibitor (e.g., an anti CTLA-4 antibody), and, (iv) a combination thereof. The therapeutic methods disclosed herein comprise, e.g., the administration of a combination therapy disclosed herein for the treatment of cancer, e.g., by reducing the size of a tumor or inhibiting the growth of a tumor, in a subject in need thereof.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: April 13, 2021
    Assignee: ModernaTX, Inc.
    Inventors: Joshua P. Frederick, Susannah Hewitt, Ailin Bai, Stephen G. Hoge, Vladimir Presnyak, Iain McFadyen, Kerry Benenato, Ellalahewage Sathyajith Kumarasinghe
  • Publication number: 20210038529
    Abstract: The disclosure relates to compositions and methods for the preparation, manufacture and therapeutic use of combinations of immunomodulatory polynucleotides (e.g., mRNAs) encoding an immune response primer polypeptide (e.g., an interleukin 23 (IL-23) polypeptide or an interleukin 36? (IL-36-gamma) polypeptide), and an immune response co-stimulatory signal polypeptide (e.g., an OX40L polypeptide).
    Type: Application
    Filed: October 15, 2020
    Publication date: February 11, 2021
    Inventors: Joshua FREDERICK, Ailin BAI, Vladimir PRESNYAK, Stephen G. HOGE, Kerry BENENATO, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Susannah HEWITT
  • Publication number: 20200376081
    Abstract: The present disclosure relates to polynucleotides comprising an open reading frame of linked nucleosides encoding human interleukin-12 (IL12), functional fragments thereof, and fusion proteins comprising IL12. In some embodiments, the open reading frame is sequence-optimized. In particular embodiments, the disclosure provides sequence-optimized polynucleotides comprising nucleotides encoding the polypeptide sequence of human IL12, or sequences having high sequence identity with those sequence optimized polynucleotides.
    Type: Application
    Filed: April 7, 2020
    Publication date: December 3, 2020
    Inventors: Joshua FREDERICK, Susannah HEWITT, Ailin BAI, Stephen HOGE, Vladimir PRESNYAK, Iain MCFADYEN, Kerry BENENATO, Ellalahewage Sathyajith KUMARASINGHE
  • Publication number: 20200354429
    Abstract: The invention relates to mRNA therapy for the treatment of fibrosis and/or cardiovascular disease. mRNAs for use in the invention, when administered in vivo, encode human relaxin, isoforms thereof, functional fragments thereof, and fusion proteins comprising relaxin. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of relaxin expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient relaxin activity in subjects.
    Type: Application
    Filed: July 30, 2020
    Publication date: November 12, 2020
    Applicant: MODERNATX, INC.
    Inventors: Barry Ticho, Nadege Briancon-Eris, Zhinan Xia, Athanasios Dousis, Seymour de Picciotto, Vladimir Presnyak, Stephen Hoge, Iain Mcfadyen, Kerry Benenato, Ellalahewage Sathyajith Kumarasinghe
  • Patent number: 10730924
    Abstract: The invention relates to mRNA therapy for the treatment of fibrosis and/or cardiovascular disease. mRNAs for use in the invention, when administered in vivo, encode human relaxin, isoforms thereof, functional fragments thereof, and fusion proteins comprising relaxin. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of relaxin expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient relaxin activity in subjects.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: August 4, 2020
    Assignee: ModernaTX, Inc.
    Inventors: Barry Ticho, Nadege Briancon-Eris, Zhinan Xia, Athanasios Dousis, Seymour de Picciotto, Vladimir Presnyak, Stephen Hoge, Iain Mcfadyen, Kerry Benenato, Ellalahewage Sathyajith Kumarasinghe
  • Publication number: 20200149052
    Abstract: The invention relates to mRNA therapy for the treatment of Fabry disease. mRNAs for use in the invention, when administered in vivo, encode human the ?-galactosidase A (GLA), isoforms thereof, functional fragments thereof, and fusion proteins comprising GLA. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to effect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of GLA expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient GLA activity in subjects, namely Gb3 and lyso-Gb3.
    Type: Application
    Filed: September 13, 2019
    Publication date: May 14, 2020
    Inventors: Paolo MARTINI, Stephen G. HOGE, Kerry BENENATO, Vladimir PRESNYAK, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Xuling ZHU, Lin Tung GUEY, Staci SABNIS
  • Patent number: 10646549
    Abstract: The present disclosure relates to polynucleotides comprising an open reading frame of linked nucleosides encoding human interleukin-12 (IL12), functional fragments thereof, and fusion proteins comprising IL12. In some embodiments, the open reading frame is sequence-optimized. In particular embodiments, the disclosure provides sequence-optimized polynucleotides comprising nucleotides encoding the polypeptide sequence of human IL12, or sequences having high sequence identity with those sequence optimized polynucleotides.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: May 12, 2020
    Assignee: ModernaTX, Inc.
    Inventors: Joshua Frederick, Susannah Hewitt, Ailin Bai, Stephen Hoge, Vladimir Presnyak, Iain Mcfadyen, Kerry Benenato, Ellalahewage Sathyajith Kumarasinghe
  • Publication number: 20200113844
    Abstract: The disclosure relates to compositions and methods for the preparation, manufacture and therapeutic use of combinations of immunomodulatory polynucleotides (e.g., mRNAs) encoding an immune response primer polypeptide (e.g., an interleukin 23 (IL-23) polypeptide or an interleukin 36? (IL-36-gamma) polypeptide), and an immune response co-stimulatory signal polypeptide (e.g., an OX40L polypeptide).
    Type: Application
    Filed: August 16, 2019
    Publication date: April 16, 2020
    Applicant: ModernaTX, Inc.
    Inventors: Joshua P. FREDERICK, Ailin BAI, Vladimir PRESNYAK, Stephen G. HOGE, Kerry BENENATO, Iain MCFADYEN, Ellalahewage Sathyajith KUMARASINGHE, Susannah HEWITT
  • Publication number: 20200085916
    Abstract: The invention relates to mRNA therapy for the treatment of Acute Intermittent Porphyria (AIP). mRNAs for use in the invention, when administered in vivo, encode human porphobilinogen deaminase (PBGD), isoforms thereof, functional fragments thereof, and fusion proteins comprising PBGD. mRNAs of the invention are preferably encapsulated in lipid nanoparticles (LNPs) to affect efficient delivery to cells and/or tissues in subjects, when administered thereto. mRNA therapies of the invention increase and/or restore deficient levels of PBGD expression and/or activity in subjects. mRNA therapies of the invention further decrease levels of toxic metabolites associated with deficient PBGD activity in subjects, namely porphobilinogen and aminolevulinate (PBG and ALA).
    Type: Application
    Filed: May 18, 2017
    Publication date: March 19, 2020
    Inventors: Paolo Martini, Stephen Hoge, Kerry Benenato, Vladimir Presnyak, Lei Jiang, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe, Antonio Fontanellas Roma, Pedro Berraondo Lopez, Matias Antonio Avila Zaragoza, Lin Tung Guey, Staci Sabnis
  • Publication number: 20200078314
    Abstract: The disclosure relates to polynucleotides comprising an open reading frame of linked nucleosides encoding human methylmalonyl-CoA mutase precursor, human methylmalonyl-CoA mutase (MCM) mature form, or functional fragments thereof. In some embodiments, the disclosure includes methods of treating methylmalonic acidemia in a subject in need thereof comprising administering an mRNA encoding an MCM polypeptide.
    Type: Application
    Filed: July 18, 2019
    Publication date: March 12, 2020
    Applicant: ModernaTX, Inc.
    Inventors: Paolo Martini, Vladimir Presnyak, Kerry Benenato, Stephen Hoge, Iain McFadyen, Ellalahewage Sathyajith Kumarasinghe
  • Publication number: 20200054747
    Abstract: The present disclosure relates to the use of nucleic acid (e.g., mRNA) combination therapies for the treatment of cancer. The disclosure provides compositions, and methods for their preparation, manufacture, and therapeutic use, wherein those compositions comprise at least two polynucleotides (e.g., mRNAs) in combination wherein the at least two polynucleotides are selected from the group consisting of (i) a polynucleotide encoding an immune response primer (e.g., IL23), (ii) a polynucleotide encoding an immune response co-stimulatory signal (e.g., OX40L), (iii) a polynucleotide encoding a checkpoint inhibitor (e.g., an anti CTLA-4 antibody), and, (iv) a combination thereof. The therapeutic methods disclosed herein comprise, e.g., the administration of a combination therapy disclosed herein for the treatment of cancer, e.g., by reducing the size of a tumor or inhibiting the growth of a tumor, in a subject in need thereof.
    Type: Application
    Filed: June 28, 2019
    Publication date: February 20, 2020
    Inventors: Joshua P. FREDERICK, Susannah HEWITT, Ailin BAI, Stephen G. HOGE, Vladimir PRESNYAK, Iain MCFADYEN, Kerry BENENATO, Ellalahewage Sathyajith KUMARASINGHE
  • Publication number: 20200032274
    Abstract: The disclosure relates to synthetic thermostable polynucleotides, as well as methods of synthesizing and delivering the polynucleotides.
    Type: Application
    Filed: February 1, 2018
    Publication date: January 30, 2020
    Applicant: Moderna TX, Inc.
    Inventors: David Mauger, Iain Mcfadyen, Vladimir Presnyak