Patents by Inventor Ian A. Cody

Ian A. Cody has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120118004
    Abstract: A gas transport system including a conduit (e.g., a pipeline) containing a feed of a gas at a first temperature and first pressure, a source of a refrigerant from an adsorption system in thermal communication with the conduit to cool the feed of gas to a reduced temperature, and at least one compressor to receive the cooled feed of gas and increase the amount of cooled feed of gas to a second pressure, in which the second pressure is greater than the first pressure.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 17, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Bhupender S. MINHAS, Ian A. CODY
  • Publication number: 20120085126
    Abstract: A distillation system for separating components fluid feed includes a stripper and a rectifier. The stripper includes an inlet to receive a feed of fluid a compressor in fluid communication with a more volatile portion of the fluid within the stripper to provide an output feed, and a reboiler in fluid communication with a less volatile portion of fluid within the stripper. The rectifier receives the output feed and includes a condenser in fluid communication with a more volatile portion of the output feed from the compressor, the condenser including an exit to remove at least one component from the more volatile portion of the output feed, and an outlet to recycle a less volatile portion of the output feed back to the stripper. Heat pipes transfer thermal energy from the rectifier to the stripper.
    Type: Application
    Filed: October 3, 2011
    Publication date: April 12, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ramesh GUPTA, Walter WEISSMAN, Berne K. STOBER, Ian A. CODY
  • Publication number: 20110277888
    Abstract: A method of providing sulfidation corrosion resistance and corrosion induced fouling resistance for a heat transfer component is disclosed. The heat transfer component includes a heat exchange surface formed from a chromium-enriched oxide containing material formed from the composition ?, ?, and ?, wherein ? is a steel containing at least about 5 to about 40 wt. % chromium, ? is a chromium enriched oxide (M3O4 or M2O3 or mixtures thereof) formed on the surface of the steel ?, wherein M is a metal containing at least 5 wt. % Cr based on the total weight of the metal M, and ? is a top layer formed on the surface of the chromium-enriched oxide ?, comprising sulfide, oxide, oxysulfide, and mixtures thereof. The top layer ? comprises iron sulfide (Fe1-xS), iron oxide (Fe3O4), iron oxysulfide, iron-chromium sulfide, iron-chromium oxide, iron-chromium oxysulfide, and mixtures thereof.
    Type: Application
    Filed: July 28, 2011
    Publication date: November 17, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: ChangMin CHUN, Mark A. GREANEY, Thomas BRUNO, Ian A. CODY, Trikur A. RAMANARAYANAN
  • Patent number: 8037928
    Abstract: A heat transfer component that is resistant to corrosion and fouling is disclosed. The heat transfer component includes a heat exchange surface formed from a chromium-enriched oxide containing material formed from the composition ?, ?, and ?, wherein ? is a steel containing at least about 5 to about 40 wt. % chromium, ? is a chromium enriched oxide (M3O4 or M2O3 or mixtures thereof) formed on the surface of the steel ?, wherein M is a metal containing at least 5 wt. % Cr based on the total weight of the metal M, and ? is a top layer formed on the surface of the chromium-enriched oxide ?, comprising sulfide, oxide, oxysulfide, and mixtures thereof. The top layer ? comprises iron sulfide (Fe1-xS), iron oxide (Fe3O4), iron oxysulfide, iron-chromium sulfide, iron-chromium oxide, iron-chromium oxysulfide, and mixtures thereof. The metal M of the chromium enriched oxide (M3O4 or M2O3 or mixtures thereof) may comprise Fe, Cr, and constituting elements of the steel ?.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: October 18, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: ChangMin Chun, Mark A. Greaney, Thomas Bruno, Ian A. Cody, Trikur A. Ramanarayanan
  • Publication number: 20110239692
    Abstract: The disclosed subject matter relates to process modifications and apparatus designs that are conducive towards minimizing temperature swings (?T) useful to yield operating pressures that provide work and/or refrigeration (e.g., electricity and/or refrigeration) in sorption systems. Such process modifications and designs are particularly suited to make use of waste heat in industrial process, (e.g., a chemical processing or petrochemical refining operation) in which low grade heat source(s) are used to drive the sorption system.
    Type: Application
    Filed: March 28, 2011
    Publication date: October 6, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Bhupender S. MINHAS, Ian A. CODY, Mohsen S. YEGANEH
  • Publication number: 20110139687
    Abstract: The present invention relates to methods and systems for removing polar molecule contaminants from a refinery stream in connection with the processing of hydrocarbon fluids, chemicals, whole crude oils, blends and fractions in refineries and chemical plants that include adding high surface energy and/or high surface area nanoparticle compounds to a refinery stream to remove the polar molecule contaminants.
    Type: Application
    Filed: September 30, 2010
    Publication date: June 16, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Mohsen S. YEGANEH, Peter W. JACOBS, Ian A. CODY, Steven W. LEVINE, Eric B. SIROTA, Ramesh GUPTA, Walter WEISSMAN
  • Patent number: 7914665
    Abstract: The invention relates to a process for preparing lube oil basestocks from lube oil boiling range feeds. More particularly, the present invention is directed toward a process wherein a wax containing feed is solvent dewaxed to produce at least a partially dewaxed lube oil boiling range stream, which is hydrodewaxed to produce a first lube basestock. The first lube basestock is added to an independently selected second lube basestock and additives to make a lubricating oil.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: March 29, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Lei Zhang, Elizabeth Stavens, Lisa I-Ching Yeh, Ian A. Cody, William J. Murphy, Thomas R. Palmer
  • Patent number: 7862224
    Abstract: Vibrational energy generated with a pneumatic vibrator is controlled to independently adjust the amplitude and the frequency. A mechanical resonator is used to adjust the frequency. The controlled vibrational energy can be applied to equipment, such as a heat exchanger to mitigate fouling.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: January 4, 2011
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Limin Song, Leroy Clavenna, Mohsen S. Yeganeh, H. Alan Wolf, Glen B Brons, Wayne J. York, Ian A. Cody
  • Publication number: 20100193159
    Abstract: Vibrational energy generated with a pneumatic vibrator is controlled to independently adjust the amplitude and the frequency. A mechanical resonator is used to adjust the frequency. The controlled vibrational energy can be applied to equipment, such as a heat exchanger to mitigate fouling.
    Type: Application
    Filed: April 15, 2010
    Publication date: August 5, 2010
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Limin SONG, LeRoy Clavenna, Ian A. Cody, Mohsen S. Yeganeh, H. Alan Wolf, Glen B. Brons, Wayne J. York
  • Publication number: 20100132359
    Abstract: A sorption system is disclosed that includes a sorbent material and a fluid, in which the sorbent material and fluid in combination have a pressure index of at least 1.2.
    Type: Application
    Filed: October 21, 2009
    Publication date: June 3, 2010
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Bhupender S. Minhas, Ian A. Cody, Don E. Stratton, Sebastian C. Reyes, Charanjit S. Paur, Erick D. Gamas-Castellanos, Mohsen S. Yeganeh, Thomas F. Degnan
  • Patent number: 7726871
    Abstract: Vibrational energy generated with a pneumatic vibrator is controlled to independently adjust the amplitude and the frequency. A mechanical resonator is used to adjust the frequency. The controlled vibrational energy can be applied to equipment, such as a heat exchanger to mitigate fouling.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 1, 2010
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Limin Song, Leroy Clavenna, Ian A. Cody, Mohsen S. Yeganeh, Alan H. Wolf, Glen B. Brons, Wayne J. York
  • Publication number: 20100037773
    Abstract: A process and system for removing polar components from a process stream in a refinery process without cooling the process stream are disclosed. The process stream is fed to a first adsorber unit to remove contaminants containing sulfur from the process stream. The process stream is processed within the first adsorber unit to remove sulfur containing contaminants. The process stream is processed with the first adsorber unit at substantially the same elevated temperature. The process stream is processed within the first adsorber unit by exposing the process stream to at least one of a metal oxide and a mixed metal oxide to remove the sulfur containing contaminants from the process stream and produce a metal sulfide and a desulfurized process stream. The metal sulfide may be exposed to a stream of oxygen to regenerate the at least one of a metal oxide and a mixed metal oxide.
    Type: Application
    Filed: August 7, 2009
    Publication date: February 18, 2010
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Bhupender S. MINHAS, Frederick Y. LO, Ian A. CODY, Donald E. STRATTON
  • Patent number: 7662273
    Abstract: A process for producing lube oil basestocks wherein a wax containing lube oil boiling range feedstream is converted into a basestock suitable for use in motor oil applications by contacting it with a hydrodewaxing catalyst containing a medium pore molecular sieve having deposited thereon an active metal oxide and at least one hydrogenation metal selected from the Group VIII and Group VIB metals.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: February 16, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William J. Murphy, Stuart L. Soled, Ian A. Cody, David W. Larkin, Terry E. Helton, Gary B. McVicker
  • Publication number: 20100015564
    Abstract: A fired heater tube that is resistant to corrosion and fouling is disclosed. The fired heater tube comprises an advantageous high performance coated material composition resistant to corrosion and fouling comprises: (PQR), wherein P is an oxide layer at the surface of (PQR), Q is a coating metal layer interposed between P and R, and R is a base metal layer, wherein P is substantially comprised of alumina, chromia, silica, mullite, spinels, and mixtures thereof, Q comprises Cr, and at least one element selected from the group consisting of Ni, Al, Si, Mn, Fe, Co, B, C, N, P, Ga, Ge, As, In, Sn, Sb, Pb, Sc, La, Y, Ce, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re, Ru, Rh, Ir, Pd, Pt, Cu, Ag, Au and mixtures thereof, and R is selected from the group consisting of low chromium steels, ferritic stainless steels, austenetic stainless steels, duplex stainless steels, Inconel alloys, Incoloy alloys, Fe—Ni based alloys, Ni-based alloys and Co-based alloys.
    Type: Application
    Filed: June 8, 2009
    Publication date: January 21, 2010
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: ChangMin Chun, Narasimha-Rao Venkata Bangaru, Mark A. Greaney, Ian A. Cody, F Pierce Hubbard, David Samuel Deutsch
  • Patent number: 7638453
    Abstract: A catalyst composition containing a medium pore molecular sieve having deposited thereon an active metal oxide and at least one hydrogenation metal selected from the Group VIII and Group VIB metals for use in hydrodewaxing lube oil boiling range feedstreams.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: December 29, 2009
    Assignee: ExxonMobile Research and Engineering Company
    Inventors: William J. Murphy, Stuart L. Soled, Ian A. Cody, David W. Larkin, Terry E. Helton, Gary B. McVicker
  • Patent number: 7538065
    Abstract: An improved noble metal-containing catalyst containing a specific ratio of silica to aluminum in the framework suitable for use in the hydroprocessing of hydrocarbonaceous feeds, which is directed at a catalyst comprising a hydrogenation-dehydrogenation component selected from the Group VIII noble metals and mixtures thereof on a mesoporous support having aluminum incorporated into its framework and an average pore diameter of about 15 to less than about 40 ?.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: May 26, 2009
    Assignee: International Business Machines Corporation
    Inventors: Stephen J. McCarthy, Wenyih F. Lai, Sylvain S. Hantzer, Ian A. Cody
  • Publication number: 20090090613
    Abstract: Targeted application of anti-fouling mechanisms in a heat exchange system produces higher rates of energy recovery. The anti-fouling mechanisms with high mitigation rates can be deployed at only the hottest portions of a pre-heat train that experience the highest rates of fouling and heat loss. In application, bundles of corrosion resistant smoothed tubes are deployed in the late pre-heat train to significantly reduce the formation of harder deposits. Vibration can be used as an adjunct approach in conjunction with the corrosion resistant, smooth tubes, or deployed alone on existing bundles. The use of high performing, more durable exchangers in select locations justifies the increased cost of these components.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 9, 2009
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Ian A. Cody, Amar S. Wanni, Robert C. Welch, James E. Feather, Mark A. Greaney, Limin Song, Jasmina Poturovic
  • Patent number: 7429318
    Abstract: A process for preparing high VI lubricating oil basestocks comprising hydrotreating, hydrodewaxing and optionally hydrofinishing. The hydrotreated feedstock is hydrodewaxed using a dewaxing catalyst that has been selectively activated by oxygenate treatment. The hydrodewaxed product may then be hydrofinished.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: September 30, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ian A. Cody, William J. Murphy, Sylvain Hantzer, David W. Larkin, John E. Gallagher, Jr., Jeenok T. Kim
  • Publication number: 20080149308
    Abstract: Vibrational energy generated with a pneumatic vibrator is controlled to independently adjust the amplitude and the frequency. A mechanical resonator is used to adjust the frequency. The controlled vibrational energy can be applied to equipment, such as a heat exchanger to mitigate fouling.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Inventors: Limin Song, LeRoy Clavenna, Ian A. Cody, Mohsen S, Yeganeh, H. Alan Wolf, Glen B. Brons, Wayne J. York
  • Publication number: 20080116108
    Abstract: The invention relates to a process for preparing lube oil basestocks from lube oil boiling range feeds. More particularly, the present invention is directed toward a process wherein a wax containing feed is solvent dewaxed to produce at least a partially dewaxed lube oil boiling range stream, which is hydrodewaxed to produce a first lube basestock. The first lube basestock is added to an independently selected second lube basestock and additives to make a lubricating oil.
    Type: Application
    Filed: November 14, 2005
    Publication date: May 22, 2008
    Inventors: Lei Zhang, Elizabeth Stavens, Lisa I-Ching Yeh, Ian A. Cody, William J. Murphy, Thomas R. Palmer