Patents by Inventor Ian Adams

Ian Adams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142351
    Abstract: An apparatus including: a housing configured for installation in a landfill; a differential pressure sensor and at least one gas sensor in the housing; and a first valve configured to control landfill gas (LFG) flow to the at least one gas sensor, wherein the first valve is configured to open when the differential pressure sensor detects a selected pressure difference or pressure difference change between the atmospheric air pressure and the LFG pressure.
    Type: Application
    Filed: February 22, 2022
    Publication date: May 2, 2024
    Inventors: Jonathan Glen Miller, Daniel Shane Egan, Abbas Zahedi Kouzani, Scott Daryl Adams, Dean Michael Corva, Nathan Ian Semianiw, Tianhao Wu, Matthew Zampatti
  • Publication number: 20240147867
    Abstract: Magnetoelectric magnetic tunnel junction (MEMTJ) logic devices comprise a magnetoelectric switching capacitor coupled to a pair of magnetic tunnel junctions (MTJs) by a conductive layer. The logic state of the MEMTJ is represented by the magnetization orientation of the ferromagnetic layer of the magnetoelectric capacitor, which can be switched through the application of an appropriate input voltage to the MEMTJ. The magnetization orientation of the magnetoelectric capacitor ferromagnetic layer is read out by the MTJs. The conductive layer is positioned between the capacitor and the MTJs. The MTJ ferromagnetic free layers are exchange coupled to the ferromagnetic layer of the magnetoelectric capacitor. The potential of an MTJ free layer is based on a supply voltage applied to the reference layer of the MTJ. The MTJ reference layers have a magnetization orientation that is parallel or antiparallel to the magnetization orientations of the ferromagnetic layer of the magnetoelectric capacitor.
    Type: Application
    Filed: October 31, 2022
    Publication date: May 2, 2024
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Dominique A. Adams, Hai Li, Chia-Ching Lin, Dmitri Evgenievich Nikonov, Kaan Oguz, John J. Plombon, Ian Alexander Young
  • Publication number: 20240110671
    Abstract: A hydrogen fuel coupling system may include a hydrogen fuel tank and a hydrogen fuel supply connector. The tank has a first connector, and a second connector disposed around the first connector. The second connector has a boil-off inlet port for receiving gaseous hydrogen from the tank. The hydrogen fuel supply connector may include a hydrogen fuel transfer line, a third connector for operably sealably connecting the transfer line to a first connector of the tank for supplying liquid hydrogen, and a shroud extending around the third connector and the transfer line defining a gap therebetween. A fourth connector operably sealably connects a first end of the shroud to a second connector of the tank. A second end of the shroud is operably sealably engageable with the transfer line. A boil-off vent is connected to the shroud for venting gas from the gap.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicant: Plug Power Inc.
    Inventors: Sean DIMMER, Patrick ADAM, Ian RICHARDSON
  • Publication number: 20240113212
    Abstract: Technologies for a field effect transistor (FET) with a ferroelectric gate dielectric are disclosed. In an illustrative embodiment, a perovskite stack is grown on a buffer layer as part of manufacturing a transistor. The perovskite stack includes one or more doped semiconductor layers alternating with other lattice-matched layers, such as undoped semiconductor layers. Growing the doped semiconductor layers on lattice-matched layers can improve the quality of the doped semiconductor layers. The lattice-matched layers can be preferentially etched away, leaving the doped semiconductor layers as fins for a ribbon FET. In another embodiment, an interlayer can be deposited on top of a semiconductor layer, and a ferroelectric layer can be deposited on the interlayer. The interlayer can bridge a gap in lattice parameters between the semiconductor layer and the ferroelectric layer.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Hai Li, Arnab Sen Gupta, Gauri Auluck, I-Cheng Tung, Brandon Holybee, Rachel A. Steinhardt, Punyashloka Debashis
  • Publication number: 20240113220
    Abstract: Technologies for a transistor with a thin-film ferroelectric gate dielectric are disclosed. In the illustrative embodiment, a transistor has a thin layer of scandium aluminum nitride (ScxAl1-xN) ferroelectric gate dielectric. The channel of the transistor may be, e.g., gallium nitride or molybdenum disulfide. In one embodiment, the ferroelectric polarization changes when voltage is applied and removed from a gate electrode, facilitating switching of the transistor at a lower applied voltage. In another embodiment, the ferroelectric polarization of a gate dielectric of a transistor changes when the voltage is past a positive threshold value or a negative threshold value. Such a transistor can be used as a one-transistor memory cell.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Applicant: Intel Corporation
    Inventors: Arnab Sen Gupta, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Uygar E. Avci, Kevin P. O'Brien, Scott B. Clendenning, Jason C. Retasket, Shriram Shivaraman, Dominique A. Adams, Carly Rogan, Punyashloka Debashis, Brandon Holybee, Rachel A. Steinhardt, Sudarat Lee
  • Publication number: 20240105810
    Abstract: In one embodiment, transistor device includes a first source or drain material on a substrate, a semiconductor material on the first source or drain material, a second source or drain material on the semiconductor material, a dielectric layer on the substrate and adjacent the first source or drain material, a ferroelectric (FE) material on the dielectric layer and adjacent the semiconductor material, and a gate material on or adjacent to the FE material. The FE material may be a perovskite material and may have a lattice parameter that is less than a lattice parameter of the semiconductor material.
    Type: Application
    Filed: September 23, 2022
    Publication date: March 28, 2024
    Applicant: Intel Corporation
    Inventors: Rachel A. Steinhardt, Ian Alexander Young, Dmitri Evgenievich Nikonov, Marko Radosavljevic, Matthew V. Metz, John J. Plombon, Raseong Kim, Kevin P. O'Brien, Scott B. Clendenning, Tristan A. Tronic, Dominique A. Adams, Carly Rogan, Arnab Sen Gupta, Brandon Holybee, Punyashloka Debashis, I-Cheng Tung, Gauri Auluck
  • Patent number: 11940789
    Abstract: A system for autonomous or semi-autonomous operation of a vehicle is disclosed. The system includes a machine automation portal (MAP) application configured to enable a computing device to (a) display a map of a work site and (b) provide a graphical user interface that enables a user to (i) define a boundary of an autonomous operating zone on the map and (ii) define a boundary of one or more exclusion zones. The system also includes a robotics processing unit configured to (a) receive the boundary of the autonomous operating zone and the boundary of each exclusion zone from the computing device, (b) generate a planned command path that the vehicle will travel to perform a task within the autonomous operating zone while avoiding each exclusion zone, and (c) control operation of the vehicle so that the vehicle travels the planned command path to perform the task.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 26, 2024
    Assignee: EQUIPMENTSHARE.COM INC.
    Inventors: William J. Schlacks, IV, Brian Adams, James Dianics, Ian Graves, Rob Martin, Scott Pfursich
  • Publication number: 20240097031
    Abstract: In one embodiment, a transistor device includes a gate material layer on a substrate, a ferroelectric (FE) material layer on the gate material, a semiconductor channel material layer on the FE material layer, a first source/drain material on the FE material layer and adjacent the semiconductor channel material layer, and a second source/drain material on the FE material layer and adjacent the semiconductor channel material layer and on an opposite side of the semiconductor channel material layer from the first source/drain material. A first portion of the FE material layer is directly between the gate material and the first source/drain material, and a second portion of the FE material layer is directly between the gate material and the second source/drain material.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Applicant: Intel Corporation
    Inventors: Punyashloka Debashis, Rachel A. Steinhardt, Brandon Holybee, Kevin P. O'Brien, Dmitri Evgenievich Nikonov, John J. Plombon, Ian Alexander Young, Raseong Kim, Carly Rogan, Dominique A. Adams, Arnab Sen Gupta, Marko Radosavljevic, Scott B. Clendenning, Gauri Auluck, Hai Li, Matthew V. Metz, Tristan A. Tronic, I-Cheng Tung
  • Patent number: 11914365
    Abstract: A system for autonomous or semi-autonomous operation of a vehicle is disclosed. The system includes a machine automation portal (MAP) application configured to enable a computing device to (a) display a map of a work site and (b) provide a graphical user interface that enables a user to (i) define a boundary of an autonomous operating zone on the map and (ii) define a boundary of one or more exclusion zones. The system also includes a robotics processing unit configured to (a) receive the boundary of the autonomous operating zone and the boundary of each exclusion zone from the computing device, (b) generate a planned command path that the vehicle will travel to perform a task within the autonomous operating zone while avoiding each exclusion zone, and (c) control operation of the vehicle so that the vehicle travels the planned command path to perform the task.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: February 27, 2024
    Assignee: EQUIPMENTSHARE.COM INC.
    Inventors: William J. Schlacks, IV, Brian Adams, James Dianics, Ian Graves, Rob Martin, Scott Pfursich
  • Patent number: 11755230
    Abstract: Snapshots may be remotely replicated asynchronously from a first LSU (R1) on a first storage system (A) to a second replica LSU (R2) on a second storage system (A2). The storage system A1 may open a consistency window to suspend initiating processing of new write operations received on A1. While the consistency window is open, A1 may: take a first snapshot, SS11, of R1; record, in association with the first replication cycle, an indication to replicate SS11 on A2; and initiate a next replication cycle to record write operations of the next new write requests to be received from hosts. After initiating a next replication cycle, A1 may close the consistency and transmit the first replication cycle to A2. A2 may apply the write operations of the first replication cycle to R2, and then take a second snapshot SS12 of R2, which should be a replica of SS11.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: September 12, 2023
    Assignee: EMC IP Holding Company LLC
    Inventors: Ian Adams, Bhaskar Bora, Jeffrey Wilson
  • Publication number: 20220342549
    Abstract: Snapshots may be remotely replicated asynchronously from a first LSU (R1) on a first storage system (A) to a second replica LSU (R2) on a second storage system (A2). The storage system A1 may open a consistency window to suspend initiating processing of new write operations received on A1. While the consistency window is open, A1 may: take a first snapshot, SS11, of R1; record, in association with the first replication cycle, an indication to replicate SS11 on A2; and initiate a next replication cycle to record write operations of the next new write requests to be received from hosts. After initiating a next replication cycle, A1 may close the consistency and transmit the first replication cycle to A2. A2 may apply the write operations of the first replication cycle to R2, and then take a second snapshot SS12 of R2, which should be a replica of SS11.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 27, 2022
    Applicant: EMC IP Holding Company LLC
    Inventors: Ian Adams, Bhaskar Bora, Jeffrey Wilson
  • Publication number: 20220342908
    Abstract: Snapshots from a first LSU (R1) on a first storage system (A1) may be replicated to a second replica LSU (R2) on a second storage system (A2), for example, concurrently to remotely replicating (e.g., synchronously) write operations for R1 to R2. A process, P, on A1 executing the replication of the snapshots from R1 to R2 may be a separate process than the one or more processes on A1 executing remote replication of write operations for R1 to R2. During a consistency window on A1, outstanding write operations for R1 at the time the consistency window opened may be logged, and a pair of snapshots, SS11 and SS12 may be activated on R1 and R2, respectively. After the consistency window has closed, the SS12 snapshot metadata and snapshot data may be updated based on the outstanding write operations.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 27, 2022
    Applicant: EMC IP Holding Company LLC
    Inventors: Bhaskar Bora, Deepak Vokaliga, Mark J. Halstead, Jeffrey Wilson, William R. Stronge, Ian Adams
  • Patent number: 11347409
    Abstract: A primary storage system appends a red-hot data indicator to each track of data transmitted on a remote data facility during an initial synchronization state. The red-hot data indicator indicates, on a track-by-track basis, whether the data associated with that track should be stored as compressed or uncompressed data by the backup storage system. The red-hot data indicator may be obtained from the primary storage system's extent-based red-hot data map. If the red-hot data indicator indicates that the track should remain uncompressed, or if the track is locally identified as red-hot data, the backup storage system stores the track as uncompressed data. If the red-hot data indicator indicates that the track should be compressed, the backup storage system compresses the track and stores the track as compressed data. After the initial synchronization process has completed, red-hot data indicators are no longer appended to tracks by the primary storage system.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: May 31, 2022
    Assignee: Dell Products, L.P.
    Inventors: Benjamin Randolph, Rong Yu, Malak Alshawabkeh, Ian Adams
  • Publication number: 20220116455
    Abstract: Various systems and methods for implementing computational storage are described herein.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 14, 2022
    Inventors: Arun Raghunath, Mohammad Chowdhury, Michael Mesnier, Ravishankar R. Iyer, Ian Adams, Thijs Metsch, John J. Browne, Adrian Hoban, Veeraraghavan Ramamurthy, Patrick Koeberl, Francesc Guim Bernat, Kshitij Arun Doshi, Susanne M. Balle, Bin Li
  • Patent number: 10402095
    Abstract: The system, devices, and methods disclosed herein relate to online data expansion in disaster recovery enabled data storage systems. We disclose embodiments that allow storage devices, which are coupled to one another in a disaster recovery, data replication-type scenario, to perform storage expansion in most cases without having to disable remote replication during the expansion. The teachings of this patent application facilitate methods of expansion for data storage device pairings where the data storage devices are the same size or where the primary storage device is smaller than the secondary storage device. In both of these situations, expansion occurs without disabling disaster recovery. In the situation where the secondary storage device is larger than the primary device, expansion is allowed, with the caveat that disaster recovery must be disabled briefly.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: September 3, 2019
    Assignee: EMC IP Holding Company LLC
    Inventors: Ian Adams, Kevin C. Heasley, Deepak Vokaliga
  • Patent number: 7552280
    Abstract: Described is a process and device for accessing data stored in multiple logical volumes. The data are replicated on first and second storage elements, such as the redundant hard disk drives of a disk mirror. The multiple logical volumes are divisible into a first logical volume and a second logical volume. All read requests targeting the first logical volume are directed to one of the first and second storage elements. Read requests targeting the second logical volume are asymmetrically interleaved between the first and second storage elements. An asymmetric interleave ratio is determined and implemented that substantially balances the read requests to the multiple logical volumes between the first and second storage elements.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: June 23, 2009
    Assignee: EMC Corporation
    Inventors: Amnon Naamad, Ron Arnan, Sachin More, Ian Adams
  • Patent number: 7333431
    Abstract: Predictions of congestion conditions for a traffic stream in a communication network are applied to modify an initial congestion window size for the traffic stream; and dynamic bandwidth control is thereafter applied to the traffic stream. This dynamic bandwidth control may include modulating inter-packet bandwidths of the traffic stream according to a capacity of a bottleneck in a communication path through which the traffic stream passes in the communication network. The predictions of congestion conditions may be based on monitoring packet losses and/or round trip times within the communication network for a selected period of time. The monitoring may be performed on at least one of a traffic stream-by traffic stream basis, a connection-by-connection basis, a link-by-link basis, or a destination-by-destination basis.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: February 19, 2008
    Assignee: Network Physics, Inc.
    Inventors: Han C. Wen, Ian Adam, Minh Duong-van, Tomas J. Pavel, Mark Crane
  • Patent number: 7248564
    Abstract: Packet round trip times (RTT) within a communication network are measured and from those measurements information regarding congestion conditions within the network is extracted. The RTT measurements are organized into an invariant distribution (a histogram) and an analytical tool which is designed to reveal periodicity information (such as a Fourier or wavelet transform, etc.) is applied to the distribution to obtain a period plot. From this period plot, bandwidth information (indicative of the congestion conditions and/or link capacities within the network) can be obtained.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: July 24, 2007
    Assignee: Network Physics, Inc.
    Inventors: Gilbert Grosdidier, Minh Duong-van, Tomas J. Pavel, Han C. Wen, Ian Adam, Richard Blanckenbecler
  • Publication number: 20060146318
    Abstract: A method of self-testing includes transmitting a plurality of self-test signals and receiving the plurality of self-test signals. In addition, the method includes storing the received self-test signal in a first database; and comparing the received self-test signal with data from a second database. An self-testing apparatus and a method of for assuring substantially continued calibrated function of a testing device.
    Type: Application
    Filed: January 6, 2005
    Publication date: July 6, 2006
    Inventors: Ian Adam, William Thompson, Darren Winslow
  • Patent number: 7072297
    Abstract: Congestion within a traffic stream of interest in a communication network is characterized as self-induced congestion or cross-induced congestion by analyzing a correlation result of a time series of throughput data of the traffic stream of interest and making the characterization based on power spectrum features found in the correlation result. The correlation result may be obtained through a Fourier analysis, a wavelet analysis or any mathematical process based on locating periodicities in the time series. In some cases, the characterization is made at a node in the communication network that is downstream from the congestion, while in other cases, the characterization is made at a node in the communication network that is upstream of the congestion.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: July 4, 2006
    Assignee: Networks Physics, Inc.
    Inventors: Gilbert Grosdidier, Han C. Wen, Ian Adam, Minh Duong-van, Thomas J. Pavel, Richard Blankenbecler