Patents by Inventor Ian Alexander Durant Williamson
Ian Alexander Durant Williamson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12265777Abstract: In some embodiments, techniques for creating a design for a physical device are provided. A computing system receives an initial design of the physical device. Performance of the physical device is simulated using the initial design. A performance loss value is determined for the physical device based on the simulated performance at a target wavelength and one or more delta wavelengths. The performance loss value is backpropagated to determine a gradient corresponding to an influence of changes in the initial design on the total performance loss value. The initial design of the physical device is revised based at least in part on the gradient.Type: GrantFiled: September 28, 2021Date of Patent: April 1, 2025Assignee: X Development LLCInventors: Alfred Ka Chun Cheung, Martin Schubert, Ian Alexander Durant Williamson
-
Publication number: 20240184148Abstract: An optical modulator includes a modulation region, an input port, an output port, and a modulation actuator. The modulation region includes an inhomogeneous arrangement of two or more different materials having different refractive indexes to structure the modulation region to manipulate one or more optical properties of an optical carrier wave in response to a modulation bias. The input port is optically coupled to the modulation region to inject the optical carrier wave into the modulation region. The modulation actuator is disposed proximate to the modulation region and adapted to apply the modulation bias to the modulation region to generate a modulated wave. The modulation bias adjusts at least one of the different refractive indexes of the inhomogeneous arrangement to provide variable control of the one or more optical properties of the optical carrier wave. The output port is optically coupled to the modulation region to receive the modulated wave.Type: ApplicationFiled: October 20, 2022Publication date: June 6, 2024Inventors: Aleksandra Spyra, Ian Alexander Durant Williamson, Alfred Ka Chun Cheung
-
Patent number: 11962351Abstract: A multilayer photonic device is described, including an input region configured to receive an input signal, a multilayer stack optically coupled with the input region to receive the input signal, and an output region optically coupled with the multilayer stack to output an output signal. The multilayer stack can include a first metastructured dispersive region disposed in a first patterned layer of the multilayer stack and a second metastructured dispersive region disposed in a second patterned layer of the multilayer stack and optically coupled with the first metastructured dispersive region. The first metastructured dispersive region and the second metastructured dispersive region can together structure the multilayer stack to generate the output signal in response to the input signal.Type: GrantFiled: December 1, 2021Date of Patent: April 16, 2024Assignee: X Development LLCInventors: Ian Alexander Durant Williamson, Martin Schubert, Alfred Ka Chun Cheung
-
Publication number: 20240053625Abstract: An optical modulator includes a modulation region, input, output, and sink ports, and a modulation actuator. The modulation region includes an inhomogeneous arrangement of two or more different materials having different refractive indexes. The input port is optically coupled to the modulation region to inject an optical carrier wave into the modulation region. The output port is optically coupled to the modulation region to receive and emit a modulated signal having a high state and a low state. The sink port is optically coupled to the modulation region. The modulation actuator is disposed proximate to the modulation region and adapted to apply a modulation bias to the modulation region that influences the different refractive indexes of the inhomogeneous arrangement to selectively steer a portion of optical power of the optical carrier wave to the sink port when the modulated signal is modulated into the low state.Type: ApplicationFiled: August 10, 2022Publication date: February 15, 2024Inventors: Aleksandra Spyra, Ian Alexander Durant Williamson, Alfred Ka Chun Cheung
-
Publication number: 20230252201Abstract: Techniques for optimizing a design for a physical device to be fabricated by a fabrication system are disclosed. A computing system receives an initial design of the physical device. The computing system simulates fabrication of the physical device using a fabrication model associated with the fabrication system to determine predicted structural parameters. The computing system determines a gradient of the fabrication model based on an estimator. The computing system backpropagates the gradient of the fabrication model to update the predicted structural parameters and thereby generate updated structural parameters. The computing system backpropagates a gradient associated with the updated structural parameters to update the initial design and thereby generate an updated initial design. In some embodiments, the updated initial design is transmitted to the fabrication system for fabrication of the physical device.Type: ApplicationFiled: February 8, 2022Publication date: August 10, 2023Inventors: Ian Alexander Durant Williamson, Martin Schubert, Alfred Ka Chun Cheung
-
Publication number: 20230171001Abstract: A multilayer photonic device is described, including an input region configured to receive an input signal, a multilayer stack optically coupled with the input region to receive the input signal, and an output region optically coupled with the multilayer stack to output an output signal. The multilayer stack can include a first metastructured dispersive region disposed in a first patterned layer of the multilayer stack and a second metastructured dispersive region disposed in a second patterned layer of the multilayer stack and optically coupled with the first metastructured dispersive region. The first metastructured dispersive region and the second metastructured dispersive region can together structure the multilayer stack to generate the output signal in response to the input signal.Type: ApplicationFiled: December 1, 2021Publication date: June 1, 2023Inventors: Ian Alexander Durant Williamson, Martin Schubert, Alfred Ka Chun Cheung
-
Patent number: 11621784Abstract: A photonic integrated circuit comprises an optical deinterleaver, including an input region, a dispersive region, and at least two output regions. The input region is adapted to receive an input optical signal including a plurality of channels. The dispersive region is optically coupled to the input region to receive the input optical signal. The dispersive region includes an inhomogeneous arrangement of a first material and a second material to structure the dispersive region to separate the input optical signal into a plurality of multi-channel optical signals, including a first multi-channel optical signal and a second multi-channel optical signal. The at least two output regions, include a first out region and a second output region optically coupled to the dispersive region. The first output region is positioned to receive the first multi-channel optical signal and the second output region is positioned to receive the second multi-channel optical signal.Type: GrantFiled: September 29, 2021Date of Patent: April 4, 2023Assignee: X Development LLCInventors: Martin Schubert, Ian Alexander Durant Williamson, Alfred Ka Chun Cheung
-
Publication number: 20230099485Abstract: In some embodiments, techniques for creating a design for a physical device are provided. A computing system receives an initial design of the physical device. Performance of the physical device is simulated using the initial design. A performance loss value is determined for the physical device based on the simulated performance at a target wavelength and one or more delta wavelengths. The performance loss value is backpropagated to determine a gradient corresponding to an influence of changes in the initial design on the total performance loss value. The initial design of the physical device is revised based at least in part on the gradient.Type: ApplicationFiled: September 28, 2021Publication date: March 30, 2023Inventors: Alfred Ka Chun Cheung, Martin Schubert, Ian Alexander Durant Williamson
-
Publication number: 20230099995Abstract: A photonic integrated circuit comprises an optical deinterleaver, including an input region, a dispersive region, and at least two output regions. The input region is adapted to receive an input optical signal including a plurality of channels. The dispersive region is optically coupled to the input region to receive the input optical signal. The dispersive region includes an inhomogeneous arrangement of a first material and a second material to structure the dispersive region to separate the input optical signal into a plurality of multi-channel optical signals, including a first multi-channel optical signal and a second multi-channel optical signal. The at least two output regions, include a first out region and a second output region optically coupled to the dispersive region. The first output region is positioned to receive the first multi-channel optical signal and the second output region is positioned to receive the second multi-channel optical signal.Type: ApplicationFiled: September 29, 2021Publication date: March 30, 2023Inventors: Martin Schubert, Ian Alexander Durant Williamson, Alfred Ka Chun Cheung
-
Publication number: 20230100128Abstract: A computer-implemented method of creating a design for a physical device using an inverse design process is provided. A computing system receives a proposed design. The computing system conducts an operational simulation based on the proposed design at a first resolution to generate a calculated performance result. The computing system provides the calculated performance result to a machine learning model to generate a predicted performance result of an operational simulation based on the proposed design at a second resolution, where the second resolution is higher than the first resolution. The computing system updates the proposed design based on the predicted performance result.Type: ApplicationFiled: September 27, 2021Publication date: March 30, 2023Inventors: Ian Alexander Durant Williamson, Martin Schubert, Alfred Ka Chun Cheung