Patents by Inventor Ian Browne

Ian Browne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210288304
    Abstract: Systems and methods for anisotropic expansion of silicon-dominant anodes may include forming an anode by pyrolyzing an active material layer comprising a binder and silicon particles in a temperature range of 600 to 800° C.; and forming a battery cell comprising a cathode, an electrolyte, and the anode, where the anode comprises the pyrolyzed active material layer on a current collector. A lateral expansion of the anode during operation may be less than 2%, less than 1%, or less than 0.6%. The active material layer may be pyrolyzed on the current collector or may be pyrolyzed on a substrate before laminating on the current collector. The anode active material layer may be pyrolyzed using a 1 hour dwell time or less or using a 2 hour dwell time or less. The active material layer may be pyrolyzed in a temperature range of 650 to 800° C.
    Type: Application
    Filed: April 27, 2021
    Publication date: September 16, 2021
    Inventors: Rahul Kamath, Fred Bonhomme, Ian Browne
  • Publication number: 20210288301
    Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <850° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material may yield silicon constituting between 85% and 95% of weight of the formed anode after pyrolysis. The carbon-based additive may yield carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis.
    Type: Application
    Filed: February 19, 2021
    Publication date: September 16, 2021
    Inventors: Bemjamin Park, Ian Browne, SungWon Choi, William Schank
  • Publication number: 20210218059
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising a carboxylic ether, a carboxylic acid based salt, or an acrylate electrolyte are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, an electrolyte, and at least one electrolyte additive selected from carboxylic ethers, carboxylic acid based salts, and acrylates.
    Type: Application
    Filed: March 15, 2021
    Publication date: July 15, 2021
    Inventors: Liwen Ji, Benjamin Yong Park, Ian Browne, Tracy Ho, Sung Won Choi
  • Publication number: 20210143432
    Abstract: Systems and methods for configuring anisotropic expansion of silicon-dominant anodes using particle size may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by utilizing a predetermined particle size distribution of silicon particles in the active material. The expansion of the anode may be greater for smaller particle size distributions, which may range from 1 to 10 ?m. The expansion of the anode may be smaller for a rougher surface active material, which may be configured by utilizing larger particle size distributions that may range from 5 to 25 ?m. The expansion may be configured to be more anisotropic using more rigid materials for the current collector, where a more rigid current collector may comprise nickel and a less rigid current collector may comprise copper.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 13, 2021
    Inventors: Ian Browne, Benjamin Park, Jill Renee Pestana, Fred Bonhomme, Monika Chhorng, David J. Lee, Heidi Anderson
  • Publication number: 20210143483
    Abstract: Systems and methods for a battery electrode having a solvent level to facilitate peeling are disclosed. In examples, a battery may include one or more electrodes and an electrolyte. The electrodes include an electrode slurry layer with a solvent. The electrode slurry is coated on a substrate, where the electrode slurry and substrate produce an active material with a residual amount of solvent in response to a heat-treatment, and where the active material comprises 10% to 25% residual solvent by weight following the heat-treatment. The amount of residual solvent facilitates peeling of the active material from the substrate, which, once pyrolyzed, may be used to create a multi-layer film with the current collector film and the active material.
    Type: Application
    Filed: November 16, 2020
    Publication date: May 13, 2021
    Inventors: Monika Chhorng, Ian Browne
  • Publication number: 20210143402
    Abstract: Systems and methods are provided for control of furnace atmosphere for improving capacity retention of silicon-dominant anode cells. Furnace atmosphere may be controlled during processing of a silicon-dominated electrode in a furnace, with the processing including pyrolysis of the silicon-dominated electrode, and the controlling including setting or adjusting one or more of pressure of the furnace atmosphere, and composition of the furnace atmosphere. The controlling of the furnace atmosphere may be configured based on at least one environment condition. The at least one environment condition may be an oxygen-free environment.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 13, 2021
    Inventors: Ian Browne, Benjamin Park
  • Publication number: 20210143416
    Abstract: Systems and methods for use of silicon with impurities in silicon-dominant anode cells may include a cathode, an electrolyte, and an anode including an active material, where the anode active material includes silicon, and where an impurity level of the silicon may be more than 400 ppm. The impurity level of the silicon is more than 600 ppm. The impurity level may be for elements with an atomic number between 2 and 42. The silicon may have a purity of 99.90% or less. A resistance of the silicon when pressed into a 4 mm thick and 15 mm diameter pellet may be 25 k? or less. The active material may include silicon, carbon, and a pyrolyzed polymer on a metal current collector. The metal current collector may include a copper or nickel foil in electrical contact with the active material. The active material may include more than 50% silicon.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 13, 2021
    Inventors: Ian Browne, Benjamin Park, Jill Renee Pestana
  • Publication number: 20210143431
    Abstract: Systems and methods for high speed formation of cells for configuring anisotropic expansion of silicon-dominant anodes may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode may be configured by a charge rate during formation of the battery. The expansion of the anode may be less than 1.5% in lateral dimensions of the anode for higher charge rates during formation with the active material being more than 50% silicon, where the higher charge rate may be 1 C or higher, and perpendicular expansion may be higher for charge rates below 1 C during formation. The expansion of the anode may be lower in lateral dimensions for thicker current collectors, which may be 10 ?m or thicker, and may be lower in lateral dimensions for more rigid materials for the current collector.
    Type: Application
    Filed: November 7, 2019
    Publication date: May 13, 2021
    Inventors: Jill Renee Pestana, Benjamin Park, Frederic Bonhomme, Giulia Canton, Ian Browne
  • Publication number: 20210143426
    Abstract: Systems and methods for batteries comprising a cathode, an electrolyte, and an anode, wherein sacrificial salts and prelithiation reagents are added to the cathode as functional additives for electrochemical prelithiation.
    Type: Application
    Filed: November 13, 2019
    Publication date: May 13, 2021
    Inventors: Rahul Kamath, Frederic Bonhomme, Qian Huang, Heidi Anderson, Ian Browne, David J. Lee, Sanjaya Perera, Younes Ansari
  • Publication number: 20210143418
    Abstract: Systems and methods are provided for carbon additives for direct coating of silicon-dominant anodes. An example composition for use in directly coated anodes may include a silicon-dominated anode active material, a carbon-based binder, and a carbon-based additive, with the composition being configured for low-temperature pyrolysis. The low-temperature pyrolysis may be conducted at <850° C. An anode may be formed using a direct coating process of the composition on a current collector. The anode active material may yield silicon constituting between 90% and 95% of weight of the formed anode after pyrolysis. The carbon-based additive may yield carbon constituting between 2% and 6% of weight of the formed anode after pyrolysis. The carbon-based additive may include carbon particles with surface area >65 m2/g.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 13, 2021
    Inventors: David J. Lee, Giulia Canton, Fred Bonhomme, Monika Chhorng, Ian Browne, Jill Renee Pestana
  • Publication number: 20210143428
    Abstract: Systems and methods are disclosed that provide for pyrolysis reactions to be performed at reduced temperatures that convert non-conductive precursor polymers to conductive carbon suitable for use in electrode materials, which may be incorporated into a cathode, an electrolyte, and an anode, where the pyrolysis method may include one or more catalysts or reactive reagents.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 13, 2021
    Inventors: Ian Browne, Benjamin Park, Giulia Canton, Fred Bonhomme
  • Publication number: 20210143401
    Abstract: Systems and methods are provided for control of thermal transfer during electrode pyrolysis based processing. A thermal rod may be used for processing battery electrodes, with the thermal rod being configured for engaging an electrode roll. At least a portion of the thermal rod is disposed within the electrode roll once it is engaged with the electrode roll, and the thermal rod is configured for providing thermal transfer into the electrode roll during processing of the electrode roll, with the processing including pyrolysis processing of the electrode roll.
    Type: Application
    Filed: November 8, 2019
    Publication date: May 13, 2021
    Inventors: Fred Bonhomme, Benjamin Park, Todd Tatar, Ian Browne
  • Publication number: 20210143393
    Abstract: Systems and methods are provided for heat treatment of whole cell structures. A battery may be formed based on applying of heat treatment to a whole cell composition that includes, at least, both anode material and cathode material, such that the anode material and the cathode material are heat treated at the same time. The heat treatment may include pyrolysis. The whole cell composition, and the corresponding cell formed based thereon, may include solid state electrolyte.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 13, 2021
    Inventors: Qian Huang, Benjamin Park, Ian Browne, Rahul Kamath, David J. Lee
  • Publication number: 20210135190
    Abstract: Systems and methods for anisotropic expansion of silicon-dominant anodes may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by a metal used for the current collector, and/or a lamination process that adheres the active material to the current collector. The expansion of the anode may be more anisotropic for thicker current collectors. A thicker current collector may be 10 ?m thick or greater. The expansion of the anode may be more anisotropic for more rigid materials used for the current collector. A more rigid current collector may include nickel and a less rigid current collector may include copper. The expansion of the anode may be more anisotropic for a rougher surface current collector.
    Type: Application
    Filed: April 10, 2020
    Publication date: May 6, 2021
    Inventors: Giulia Canton, Benjamin Park, Fred Bonhomme, David J. Lee, Ian Browne
  • Publication number: 20210135189
    Abstract: Systems and methods for anisotropic expansion of silicon-dominant anodes may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by a thickness of the current collector. The expansion of the anode may be more anisotropic for thicker current collectors. A thicker current collector may be 10 ?m thick or greater. The expansion of the anode may be more anisotropic for more rigid materials used for the current collector. A more rigid current collector may include nickel and a less rigid current collector may include copper. The expansion of the anode may be more anisotropic for a rougher surface current collector.
    Type: Application
    Filed: April 10, 2020
    Publication date: May 6, 2021
    Inventors: Giulia Canton, Benjamin Park, Fred Bonhomme, David J. Lee, Ian Browne
  • Publication number: 20210135188
    Abstract: Systems and methods for anisotropic expansion of silicon-dominant anodes may include a cathode, an electrolyte, and an anode, where the anode may include a current collector and an active material on the current collector. An expansion of the anode during operation may be configured by a roughness and/or thickness of the current collector, a metal used for the current collector, and/or a lamination process that adheres the active material to the current collector. The expansion of the anode may be more anisotropic for thicker current collectors. A thicker current collector may be 10 ?m thick or greater. The expansion of the anode may be more anisotropic for more rigid materials used for the current collector. A more rigid current collector may include nickel and a less rigid current collector may include copper. The expansion of the anode may be more anisotropic for a rougher surface current collector.
    Type: Application
    Filed: November 5, 2019
    Publication date: May 6, 2021
    Inventors: Giulia Canton, Benjamin Park, Fred Bonhomme, David J. Lee, Ian Browne
  • Patent number: 10978739
    Abstract: Electrolytes and electrolyte additives for energy storage devices comprising a carboxylic ether, a carboxylic acid based salt, or an acrylate electrolyte are disclosed. The energy storage device comprises a first electrode and a second electrode, wherein at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, an electrolyte, and at least one electrolyte additive selected from carboxylic ethers, carboxylic acid based salts, and acrylates.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: April 13, 2021
    Assignee: Enevate Corporation
    Inventors: Liwen Ji, Benjamin Yong Park, Ian Browne, Tracy Ho, Sung Won Choi
  • Publication number: 20210104724
    Abstract: Systems and methods for silicon-dominant lithium-ion cells with controlled utilization of silicon may include a cathode, an electrolyte, and an anode, where the anode has an active material comprising more than 50% silicon. The battery may be charged by lithiating silicon while not lithiating carbon. The active material may comprise more than 70% silicon. A voltage of the anode during discharge of the battery may remain above a minimum voltage at which silicon can be lithiated. The anode may have a specific capacity of greater than 3000 mAh/g. The battery may have a specific capacity of greater than 1000 mAh/g. The anode may have a greater than 90% initial Coulombic efficiency and may be polymer binder free. The battery may be charged at a 10 C rate or higher. The battery may be charged at temperatures below freezing without lithium plating. The electrolyte may comprise a liquid, solid, or gel.
    Type: Application
    Filed: October 7, 2019
    Publication date: April 8, 2021
    Inventors: Benjamin Park, Ian Browne, Sung Won Choi, Fred Bonhomme
  • Publication number: 20210098784
    Abstract: Systems and methods for silicon dominant lithium-ion cells with controlled lithiation of silicon may include a cathode, an electrolyte, and an anode. The anode may include silicon lithiated at a level after discharge that is configured to be above a minimum threshold level, where the minimum threshold lithiation is 3% silicon lithiation. The lithiation level of the silicon after charging the battery may range between 30% and 95% silicon lithiation, between 30% and 75% silicon lithiation, between 30% and 65% silicon lithiation, or between 30% and 50% silicon lithiation. The lithiation level of the silicon after discharging the battery may range between 3% and 50% silicon lithiation, between 3% and 30% silicon lithiation, or between 3% and 10% silicon lithiation. The minimum threshold level may be a lithiation level below which a cycle life of the battery degrades. The electrolyte may include a liquid, solid, or gel.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 1, 2021
    Inventors: Benjamin Park, Ian Browne, Sung Won Choi, Fred Bonhomme
  • Publication number: 20210054129
    Abstract: Disclosed are maleic anhydride-grafted cyclic olefin copolymers, methods for preparing maleic anhydride-grafted cyclic olefin copolymers, low temperature methods for laminating anodes comprising the maleic anhydride-grafted cyclic olefin copolymers, and anodes and alkali ion batteries that comprise the maleic anhydride-grafted cyclic olefin copolymers.
    Type: Application
    Filed: August 22, 2019
    Publication date: February 25, 2021
    Inventors: AMBICA J. NAIR, GIULIA CANTON, IAN BROWNE, MICHAEL BUET