Patents by Inventor Ian Burn

Ian Burn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8644000
    Abstract: A multilayer ceramic capacitor, having a plurality of electrode layers and a plurality of substantially titanium dioxide dielectric layers, wherein each respective titanium dioxide dielectric layer is substantially free of porosity, wherein each respective substantially titanium dioxide dielectric layer is positioned between two respective electrode layers, wherein each respective substantially titanium dioxide dielectric layer has an average grain size of between about 200 and about 400 nanometers, wherein each respective substantially titanium dioxide dielectric layer has maximum particle size of less than about 500 nanometers. Typically, each respective substantially titanium dioxide dielectric layer further includes at least one dopant selected from the group including P, V, Nb, Ta, Mo, W, and combinations thereof, and the included dopant is typically present in amounts of less than about 0.01 atomic percent.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: February 4, 2014
    Inventors: Fatih Dogan, Alan Devoe, Ian Burn
  • Publication number: 20130063858
    Abstract: A multilayer ceramic capacitor, having a plurality of electrode layers and a plurality of substantially titanium dioxide dielectric layers, wherein each respective titanium dioxide dielectric layer is substantially free of porosity, wherein each respective substantially titanium dioxide dielectric layer is positioned between two respective electrode layers, wherein each respective substantially titanium dioxide dielectric layer has an average grain size of between about 200 and about 400 nanometers, wherein each respective substantially titanium dioxide dielectric layer has maximum particle size of less than about 500 nanometers. Typically, each respective substantially titanium dioxide dielectric layer further includes at least one dopant selected from the group including P, V, Nb, Ta, Mo, W, and combinations thereof, and the included dopant is typically present in amounts of less than about 0.01 atomic percent.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 14, 2013
    Inventors: Fatih Dogan, Alan Devoe, Ian Burn
  • Patent number: 8183108
    Abstract: A method of making dense dielectrics layers via chemical solution deposition by adding inorganic glass fluxed material to high dielectric constant compositions, depositing the resultant mixture onto a substrate and annealing the substrate at temperatures between the softening point of the inorganic glass flux and the melting point of the substrate. A method of making a capacitor comprising a dense dielectric layer.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: May 22, 2012
    Assignee: CDA Processing Limited Liability Company
    Inventors: William J. Borland, Seigi Suh, Jon-Paul Maria, Jon Fredrick Ihlefeld, Ian Burn
  • Patent number: 8178456
    Abstract: A batch powder composition for preparing a non-ferroelectric, sintered dielectric ceramic; a multilayer ceramic capacitor thereof; and an energy storage device. The batch powder contains a titanate powder of at least one of CaTiO3, SrTiO3, or CaxSr1-xTiO3 where x=0 to 1, and an acceptor additive. A sintering aid and a donor additive also may be present in the batch powder. The batch powder may be sintered at temperatures of about 1050° C. or less. The ceramic contains a titanate from the titanate powder, the acceptor additive, and the optional sintering aids and donor additive. The multilayer ceramic capacitor is made of the sintered dielectric ceramic and may have electrodes of copper or a copper-nickel alloy. An energy storage device has electrical connections connected to the electrodes of the multilayer ceramic capacitor. The electrical connections may be in electrical communication with additional multilayer ceramic capacitors.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: May 15, 2012
    Assignee: Ian Burn Consulting, Inc.
    Inventor: Ian Burn
  • Patent number: 7923395
    Abstract: A dielectric ceramic composition in a multilayer ceramic capacitor with a composition of formula: {[(CaO)t(SrO)1-t]m[(ZrO2)v(TiO2)1-v]}1-s-xAsEx wherein: A is a transition metal oxide; E is an oxide of an element selected from the group consisting of Ge, Si, Ga and combination thereof; m is 0.98 to 1.02; t is 0.50 to 0.90; v is 0.8 to 1.0; s and x are selected from the group consisting of: a) 0?x?0.08, 0.0001?s?0.043 and x?1.86s; and b) 0?0.0533, 0.0001?s?0.08 and x?0.667s.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: April 12, 2011
    Assignee: Kemet Electronics Corporation
    Inventors: Michael S. Randall, Corey Antoniades, Daniel E. Barber, Xilin Xu, James Beeson, Pascal Pinceloup, Abhijit Gurav, Thomas Poole, Azizuddin Tajuddin, Ian Burn
  • Patent number: 7916451
    Abstract: A dielectric ceramic composition in a multilayer ceramic capacitor with a composition of formula: {[(CaO)t(SrO)1-t]m[(ZrO2)v(TiO2)1-v]}1-s-xAsEx wherein: A is a transition metal oxide; E is an oxide of an element selected from the group consisting of Ge, Si, Ga and combinations thereof; m is 0.98 to 1.02; t is 0.50 to 0.90; v is 0.8 to 1.0; s and x are selected from the group consisting of: a) 0?x?0.08, 0.0001?s?0.043 and x?1.86s; and b) 0?x?0.0533, 0.0001?s?0.08 and x?0.667s.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: March 29, 2011
    Assignee: Kemet Electronics Corporation
    Inventors: Michael S. Randall, Corey Antoniades, Daniel E. Barber, Xilin Xu, James Beeson, Pascal Pinceloup, Abhijit Gurav, Thomas Poole, Azizuddin Tajuddin, Ian Burn
  • Publication number: 20100230149
    Abstract: A method of making dense dielectrics layers via chemical solution deposition by adding inorganic glass fluxed material to high dielectric constant compositions, depositing the resultant mixture onto a substrate and annealing the substrate at temperatures between the softening point of the inorganic glass flux and the melting point of the substrate. A method of making a capacitor comprising a dense dielectric layer.
    Type: Application
    Filed: June 15, 2006
    Publication date: September 16, 2010
    Inventors: William Borland, Seigi Suh, Jon-Paul Maria, Jon Fredrick Ihlefeld, Ian Burn
  • Publication number: 20100110608
    Abstract: This invention provides a method to make core-shell structured dielectric particles which consist of a conductive core and at least one layer of insulating dielectric shell for the application of multilayer ceramic capacitors (MLCC). The use of said core-shell instead of conventionally solid dielectric particles as the capacitor's active layers simplifies the MLCC manufacturing processes and effectively improves the MLCC properties. In particular, the use of core-shell particles with a thin shell of high permittivity dielectric material improves the capacitance volumetric efficiency, and the use of core-shell particles with a thick shell of dielectric will improve capacitor device's energy storage capacity as the results of improved electrical and mechanical strength.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 6, 2010
    Inventors: Frank Wei, Ian Burn
  • Patent number: 7670981
    Abstract: A dielectric ceramic composition in a multilayer ceramic capacitor with a composition of formula: {[(CaO)t(SrO)1-t]m[(ZrO2)v(TiO2)1-v]}1-s-xAsEx wherein: A is a transition metal oxide; E is an oxide of an element selected from the group consisting of Ge, Si, Ga and combinations thereof; m is 0.98 to 1.02; t is 0.50 to 0.90; v is 0.8 to 1.0; s and x are selected from the group consisting of: a) 0?x?0.08, 0.0001?s?0.043 and x?1.86s; and b) 0?x?0.0533, 0.0001?s?0.08 and x?0.667s.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: March 2, 2010
    Assignee: Kemet Electronics Corporation
    Inventors: Michael S. Randall, Corey Antoniades, Daniel E. Barber, Xilin Xu, James Beeson, Pascal Pinceloup, Abhijit Gurav, Thomas Poole, Azizuddin Tajuddin, Ian Burn
  • Publication number: 20100008019
    Abstract: A batch powder composition for preparing a non-ferroelectric, sintered dielectric ceramic; a multilayer ceramic capacitor thereof; and an energy storage device. The batch powder contains a titanate powder of at least one of CaTiO3, SrTiO3, or CaxSr1-xTiO3 where x=0 to 1, and an acceptor additive. A sintering aid and a donor additive also may be present in the batch powder. The batch powder may be sintered at temperatures of about 1050° C. or less. The ceramic contains a titanate from the titanate powder, the acceptor additive, and the optional sintering aids and donor additive. The multilayer ceramic capacitor is made of the sintered dielectric ceramic and may have electrodes of copper or a copper-nickel alloy. An energy storage device has electrical connections connected to the electrodes of the multilayer ceramic capacitor. The electrical connections may be in electrical communication with additional multilayer ceramic capacitors.
    Type: Application
    Filed: July 8, 2008
    Publication date: January 14, 2010
    Applicant: Ian Burn Consulting Inc.
    Inventor: Ian Burn
  • Patent number: 7601181
    Abstract: Described herein are methods for making articles comprising a dielectric layer formed from any solution composition that can form barium titanate during firing and containing manganese in an amount between 0.002 and 0.05 atom percent of the solution composition, wherein the dielectric layer has been formed on metal foil and fired in a reducing atmosphere.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 13, 2009
    Assignees: E.I. du Pont de Nemours and Company, North Carolina State University
    Inventors: William Borland, Ian Burn, Jon Fredrick Ihlefeld, Jon Paul Maria, Seigi Suh
  • Publication number: 20090244804
    Abstract: A dielectric ceramic composition in a multilayer ceramic capacitor with a composition of formula: {[(CaO)t(SrO)1-t]m[(ZrO2)v(TiO2)1-v]}1-s-xAsEx wherein: A is a transition metal oxide; E is an oxide of an element selected from the group consisting of Ge, Si, Ga and combinations thereof; m is 0.98 to 1.02; t is 0.50 to 0.90; v is 0.8 to 1.0; s and x are selected from the group consisting of: a) 0?x?0.08, 0.0001?s?0.043 and x?1.86s; and b) 0?x?0.0533, 0.0001?s?0.08 and x?0.667s.
    Type: Application
    Filed: June 11, 2009
    Publication date: October 1, 2009
    Inventors: Michael S. Randall, Corey Antoniades, Daniel E. Barber, Xilin Xu, James Beeson, Pascal Pinceloup, Abhijit Gurav, Thomas Poole, Azizuddin Tajuddin, Ian Burn
  • Patent number: 7572518
    Abstract: The present invention is directed to an article comprising a dielectric layer formed from any solution composition that can form barium titanate during firing and containing manganese in an amount between 0.002 and 0.05 atom percent of the solution composition, wherein the dielectric layer has been formed on metal foil and fired in a reducing atmosphere.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: August 11, 2009
    Assignees: E. I. du Pont de Nemours and Company, North Carolina State University
    Inventors: William Borland, Ian Burn, Jon Fredrick Ihlefeld, Jon Paul Maria, Seigi Suh
  • Publication number: 20090046411
    Abstract: A dielectric ceramic composition in a multilayer ceramic capacitor with a composition of formula: {[(CaO)t(SrO)1-t]m[(ZrO2)v(TiO2)1-v]}1-s-xAsEx wherein: A is a transition metal oxide; E is an oxide of an element selected from the group consisting of Ge, Si, Ga and combinations thereof; m is 0.98 to 1.02; t is 0.50 to 0.90; v is 0.8 to 1.0; s and x are selected from the group consisting of: a) 0?x?0.08, 0.0001?s?0.043 and x?1.86s; and b) 0?x?0.0533, 0.0001?s?0.08 and x?0.667s.
    Type: Application
    Filed: October 24, 2008
    Publication date: February 19, 2009
    Inventors: Michael S. Randall, Corey Antoniades, Daniel E. Barber, Xilin Xu, James Beeson, Pascal Pinceloup, Abhijit Gurav, Thomas Poole, Azizuddin Tajuddin, Ian Burn
  • Publication number: 20080107800
    Abstract: A dielectric ceramic composition in a multilayer ceramic capacitor with a composition of formula: {[(CaO)t(SrO)1-t]m[(ZrO2)v(TiO2)1-v]}1-s-xAsEx wherein: A is a transition metal oxide; E is an oxide of an element selected from the group consisting of Ge, Si, Ga and combination thereof; m is 0.98 to 1.02; t is 0.50 to 0.90; v is 0.8 to 1.0; s and x are selected from the group consisting of: a) 0?x?0.08, 0.0001?s?0.043 and x?1.86s; and b) 0?0.0533, 0.0001?s?0.08 and x?0.667s.
    Type: Application
    Filed: October 22, 2007
    Publication date: May 8, 2008
    Inventors: Michael Randall, Corey Antoniades, Daniel Barber, Xilin Xu, James Beeson, Pascal Pinceloup, Abhijit Gurav, Thomas Poole, Azizuddin Tajuddin, Ian Burn
  • Publication number: 20080047117
    Abstract: Described herein are methods for making articles comprising a dielectric layer formed from any solution composition that can form barium titanate during firing and containing manganese in an amount between 0.002 and 0.05 atom percent of the solution composition, wherein the dielectric layer has been formed on metal foil and fired in a reducing atmosphere.
    Type: Application
    Filed: October 25, 2007
    Publication date: February 28, 2008
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: William Borland, Ian Burn, Jon Ihlefeld, Jon Maria, Seigi Suh
  • Publication number: 20080044672
    Abstract: The present invention is directed to an article comprising a dielectric layer formed from any solution composition that can form barium titanate during firing and containing manganese in an amount between 0.002 and 0.05 atom percent of the solution composition, wherein the dielectric layer has been formed on metal foil and fired in a reducing atmosphere.
    Type: Application
    Filed: October 24, 2007
    Publication date: February 21, 2008
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: William Borland, Ian Burn, Jon Ihlefeld, Jon-Paul Maria, Seigi Suh
  • Publication number: 20070275158
    Abstract: A dielectric ceramic composition in a multilayer ceramic capacitor having a composition of formula: ((CaO)t(SrO)1-t(ZrO2)v(TiO2)1-v)1-s-x-y-zAsExGyHz wherein: A is a transition metal oxide; E is an oxide of a group III or IV element; G is an oxide of a group II element; H is an oxide of a lanthamide; t is 0.50 to 0.90; v is 0.8 to 1.0; s is 0.0001 to 0.08; x is 0 to 0.08; y is 0 to 0.20; and z is 0 to 0.20.
    Type: Application
    Filed: June 4, 2007
    Publication date: November 29, 2007
    Inventors: Michael Randall, Corey Antoniades, Daniel Barber, Xilin Xu, James Beeson, Pascal Pinceloup, Abhijit Gurav, Tom Poole, Azizuddin Tajuddin, Ian Burn
  • Publication number: 20070259104
    Abstract: A dielectric ceramic composition in a multilayer ceramic capacitor having a composition of formula: ((CaO)t(SrO)1-t(ZrO2)v(TiO2)1-v)1-s-x-y-zAsExGyHz wherein: A is a transition metal oxide; E is an oxide of a group III or IV element; G is an oxide of a group II element; H is an oxide of a lanthanide; t is 0.50 to 0.90; v is 0.8 to 1.0; s is 0.0001 to 0.08; x is 0 to 0.08; y is 0 to 0.20; and z is 0 to 0.20.
    Type: Application
    Filed: June 4, 2007
    Publication date: November 8, 2007
    Inventors: Michael Randall, Corey Antoniades, Daniel Barber, Xilin Xu, James Beeson, Pascal Pinceloup, Abhijit Gurav, Tom Poole, Azizuddin Tajuddin, Ian Burn
  • Publication number: 20070253140
    Abstract: A ceramic capacitor is disclosed. The capacitor comprises a plurality of base metal inner electrode layers, a plurality of ceramic dielectric layers between the inner electrode layers, and external electrodes in electrical conductivity with the inner electrode layers. At least one secondary component having an intentionally added chemistry is dispersed in the inner electrode layers and/or the dielectric layers. The chemistry evolves an oxidizing species in a controlled manner, such that it offsets localized highly reducing atmospheres that are present when the capacitor is fired in a reducing atmosphere, thereby promoting enhanced electrode connectivity in thin layer base metal multilayer capacitors.
    Type: Application
    Filed: April 28, 2006
    Publication date: November 1, 2007
    Inventors: Michael Randall, Ian Burn, Daniel Barber, Aiying Wang, James Beeson, Pascal Pinceloup, Abhijit Gurav, Tom Poole, Azizuddin Tajuddin