Patents by Inventor Ian Currier
Ian Currier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250153300Abstract: A grinding machine for edge grinding the peripheral wafer edge of a semiconductor wafer is configured for conducting an in situ dressing operation to refurbish or dress the peripheral grinding rim surface of a grinding wheel. The grinding machine includes at least one wafer-holding chuck, a grinding wheel, and a dressing tool that are linearly spaced apart and can be respectively moved relative to each other to selectively conduct the grinding and dressing operations. In one form plural grinding stations are disclosed.Type: ApplicationFiled: November 6, 2024Publication date: May 15, 2025Applicant: Lapmaster International, LLCInventors: Robert Lewis Rhoades, Ian Currier, Czeslaw Gibas, Isaak Garbar
-
Publication number: 20240367348Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.Type: ApplicationFiled: July 17, 2024Publication date: November 7, 2024Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier
-
Patent number: 12070875Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.Type: GrantFiled: April 7, 2023Date of Patent: August 27, 2024Assignee: WOLFSPEED, INC.Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier
-
Publication number: 20230241803Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.Type: ApplicationFiled: April 7, 2023Publication date: August 3, 2023Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier
-
Patent number: 11654596Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.Type: GrantFiled: February 18, 2021Date of Patent: May 23, 2023Assignee: WOLFSPEED, INC.Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier
-
Patent number: 11034056Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.Type: GrantFiled: February 7, 2020Date of Patent: June 15, 2021Assignee: Cree, Inc.Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier
-
Publication number: 20210170632Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.Type: ApplicationFiled: February 18, 2021Publication date: June 10, 2021Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier
-
Patent number: 10910127Abstract: In a method of chemical vapor deposition (CVD) growth of a polycrystalline diamond film in a CVD reactor, a gas mixture of gaseous hydrogen and a gaseous hydrocarbon is introduced into the CVD reactor. A plasma formed from the gas mixture is maintained above a surface of a conductive substrate disposed in the CVD reactor and causes a polycrystalline diamond film to grow on the surface of the conductive substrate. A temperature T at the center of the polycrystalline diamond film is controlled during growth of the polycrystalline diamond film. The CVD grown polycrystalline diamond film includes diamond crystallites that can have a percentage of orientation along a [110] diamond lattice direction?70% of the total number of diamond crystallites forming the polycrystalline diamond film.Type: GrantFiled: July 3, 2019Date of Patent: February 2, 2021Assignee: II-VI Delaware, Inc.Inventors: Wen-Qing Xu, Chao Liu, Charles J. Kraisinger, Charles D. Tanner, Ian Currier, David Sabens, Elgin E. Eissler, Thomas E Anderson
-
Publication number: 20200361121Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.Type: ApplicationFiled: February 7, 2020Publication date: November 19, 2020Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier
-
Patent number: 10611052Abstract: Silicon carbide (SiC) wafers and related methods are disclosed that include intentional or imposed wafer shapes that are configured to reduce manufacturing problems associated with deformation, bowing, or sagging of such wafers due to gravitational forces or from preexisting crystal stress. Intentional or imposed wafer shapes may comprise SiC wafers with a relaxed positive bow from silicon faces thereof. In this manner, effects associated with deformation, bowing, or sagging for SiC wafers, and in particular for large area SiC wafers, may be reduced. Related methods for providing SiC wafers with relaxed positive bow are disclosed that provide reduced kerf losses of bulk crystalline material. Such methods may include laser-assisted separation of SiC wafers from bulk crystalline material.Type: GrantFiled: May 17, 2019Date of Patent: April 7, 2020Assignee: Cree, Inc.Inventors: Simon Bubel, Matthew Donofrio, John Edmond, Ian Currier
-
Publication number: 20190326030Abstract: In a method of chemical vapor deposition (CVD) growth of a polycrystalline diamond film in a CVD reactor, a gas mixture of gaseous hydrogen and a gaseous hydrocarbon is introduced into the CVD reactor. A plasma formed from the gas mixture is maintained above a surface of a conductive substrate disposed in the CVD reactor and causes a polycrystalline diamond film to grow on the surface of the conductive substrate. A temperature T at the center of the polycrystalline diamond film is controlled during growth of the polycrystalline diamond film. The CVD grown polycrystalline diamond film includes diamond crystallites that can have a percentage of orientation along a [110] diamond lattice direction?70% of the total number of diamond crystallites forming the polycrystalline diamond film.Type: ApplicationFiled: July 3, 2019Publication date: October 24, 2019Inventors: Wen-Qing Xu, Chao Liu, Charles J. Kraisinger, Charles D. Tanner, Ian Currier, David Sabens, Elgin E. Eissler, Thomas E. Anderson
-
Patent number: 10373725Abstract: In a method of chemical vapor deposition (CVD) growth of a polycrystalline diamond film in a CVD reactor, a gas mixture of gaseous hydrogen and a gaseous hydrocarbon is introduced into the CVD reactor. A plasma formed from the gas mixture is maintained above a surface of a conductive substrate disposed in the CVD reactor and causes a polycrystalline diamond film to grow on the surface of the conductive substrate. A temperature T at the center of the polycrystalline diamond film is controlled during growth of the polycrystalline diamond film. The CVD grown polycrystalline diamond film includes diamond crystallites that can have a percentage of orientation along a [110] diamond lattice direction?70% of the total number of diamond crystallites forming the polycrystalline diamond film.Type: GrantFiled: August 4, 2015Date of Patent: August 6, 2019Assignee: II-VI IncorporatedInventors: Wen-Qing Xu, Chao Liu, Charles J. Kraisinger, Charles D. Tanner, Ian Currier, David Sabens, Elgin E. Eissler, Thomas E. Anderson
-
Publication number: 20160130725Abstract: In a method of chemical vapor deposition (CVD) growth of a polycrystalline diamond film in a CVD reactor, a gas mixture of gaseous hydrogen and a gaseous hydrocarbon is introduced into the CVD reactor. A plasma formed from the gas mixture is maintained above a surface of a conductive substrate disposed in the CVD reactor and causes a polycrystalline diamond film to grow on the surface of the conductive substrate. A temperature T at the center of the polycrystalline diamond film is controlled during growth of the polycrystalline diamond film. The CVD grown polycrystalline diamond film includes diamond crystallites that can have a percentage of orientation along a [110] diamond lattice direction ?70% of the total number of diamond crystallites forming the polycrystalline diamond film.Type: ApplicationFiled: August 4, 2015Publication date: May 12, 2016Inventors: Wen-Qing Xu, Chao Liu, Charles J. Kraisinger, Charles D. Tanner, Ian Currier, David Sabens, Elgin E. Eissler, Thomas E. Anderson