Patents by Inventor Ian D. Wing

Ian D. Wing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9011158
    Abstract: A human surrogate neck model includes a spinal neck region containing cervical vertebrae. A biosimulant intervertebral material is inserted between the cervical vertebrae. The spinal neck region is surrounded by a first silicone material mixed with a polymeric cross-linking inhibitor. One or more elastic tension bands are anchored to a top interface and a bottom interface of the neck model. A second silicone material mixed with a polymeric cross-linking inhibitor is applied to surround the spinal neck region and the first silicone material and to embed the tension bands. One or more of the elastic tension bands and/or a concentration ratio of the first silicone material or second silicone material to the polymeric cross-linking inhibitor can be adjusted for variable test conditions to closely simulate or mimic the static and dynamic characteristics of a human neck in various scenarios.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: April 21, 2015
    Assignee: The Johns Hopkins University
    Inventors: Andrew C. Merkle, Jack C. Roberts, Ian D. Wing, Liming M. Voo, Craig B. Leese, Howard A. Conner
  • Publication number: 20140220530
    Abstract: A human surrogate neck model includes a spinal neck region containing cervical vertebrae. A biosimulant intervertebral material is inserted between the cervical vertebrae. The spinal neck region is surrounded by a first silicone material mixed with a polymeric cross-linking inhibitor. One or more elastic tension bands are anchored to a top interface and a bottom interface of the neck model. A second silicone material mixed with a polymeric cross-linking inhibitor is applied to surround the spinal neck region and the first silicone material and to embed the tension bands. One or more of the elastic tension bands and/or a concentration ratio of the first silicone material or second silicone material to the polymeric cross-linking inhibitor can be adjusted for variable test conditions to closely simulate or mimic the static and dynamic characteristics of a human neck in various scenarios.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 7, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Andrew C. Merkle, Jack C. Roberts, Ian D. Wing, Liming M. Voo, Craig B. Leese, Howard A. Conner
  • Patent number: 8725449
    Abstract: A human surrogate head model (HSHM) to measure brain/skull displacement due to a physical force, such as due to an explosive, ballistic, or automotive crash type of event. A HSHM may include a plurality of magnetic field generators positioned stationary relative to a HSHM skull, each to generate a magnetic field oriented with respect to a corresponding one of multiple directions. The HSHM may include one or more electromagnetic force (EMF)-based displacement sensors, each of which may include three inductive coils oriented orthogonally with respect to one another and co-aligned about a central point. A signal processor may be implemented to separate signals generated by each coil of each EMF-based displacement sensor into a plurality of component magnitudes, each attributable to a corresponding one of the magnetic fields. A computer-implemented model may be implemented to correlate between the component magnitudes and a corresponding position and orientation of the displacement sensor.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: May 13, 2014
    Assignee: The Johns Hopkins University
    Inventors: Jack C. Roberts, Andrew C. Merkle, Bliss G. Carkhuff, Ian D. Wing, Craig B. Leese
  • Publication number: 20120330599
    Abstract: A human surrogate head model (HSHM) to measure brain/skull displacement due to a physical force, such as due to an explosive, ballistic, or automotive crash type of event. A HSHM may include a plurality of magnetic field generators positioned stationary relative to a HSHM skull, each to generate a magnetic field oriented with respect to a corresponding one of multiple directions. The HSHM may include one or more electromagnetic force (EMF)-based displacement sensors, each of which may include three inductive coils oriented orthogonally with respect to one another and co-aligned about a central point. A signal processor may be implemented to separate signals generated by each coil of each EMF-based displacement sensor into a plurality of component magnitudes, each attributable to a corresponding one of the magnetic fields. A computer-implemented model may be implemented to correlate between the component magnitudes and a corresponding position and orientation of the displacement sensor.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Inventors: Jack C. Roberts, Andrew C. Merkle, Bliss G Carkhuff, Ian D. Wing, Craig B. Leese