Patents by Inventor Ian Derrington

Ian Derrington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210032695
    Abstract: The present disclosure provides method and systems for improving nanopore-based analyses of polymers. The disclosure provides methods for selectively modifying one or more monomeric subunit(s) of a kind a pre-analyte polymer that results polymer analyte with a modified subunit. The polymer analyte produces a detectable signal in a nanopore-based system. The detectable signal, and/or its deviation from a reference signal, indicates the location of the modified subunit in the polymer analyte and, thus, permits the identification of the subunit at that location in the original pre-analyte polymer.
    Type: Application
    Filed: September 22, 2020
    Publication date: February 4, 2021
    Applicants: University of Washington through its Center for Commercialization, Illumina, Inc.
    Inventors: Jens H. Gundlach, Andrew Laszlo, Ian Derrington, Jeffrey G. Mandell
  • Patent number: 10822652
    Abstract: The present disclosure provides method and systems for improving nanopore-based analysis of polymers. The disclosure provides methods for selectively modifying one or more monomeric subunit(s) of a kind in a re-analyte polymer that results in a polymer analyte with a modified subunit. The polymer analyte produces a detectable signal in a nanopore-based system. The detectable signal, and/or its deviation from a reference signal, indicates the location of the modified subunit in the polymer analyte and, thus, permits the identification of the subunit at that location in the original pre-analyte polymer.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: November 3, 2020
    Assignees: University of Washington through its Center for Commercialization, Illumina, Inc.
    Inventors: Jens H. Gundlach, Andrew Laszlo, Ian Derrington, Jeffrey G. Mandell
  • Publication number: 20190106740
    Abstract: The present disclosure provides method and systems for improving nanopore-based analysis of polymers. The disclosure provides methods for selectively modifying one or more monomeric subunit(s) of a kind in a re-analyte polymer that results in a polymer analyte with a modified subunit. The polymer analyte produces a detectable signal in a nanopore-based system. The detectable signal, and/or its deviation from a reference signal, indicates the location of the modified subunit in the polymer analyte and, thus, permits the identification of the subunit at that location in the original pre-analyte polymer.
    Type: Application
    Filed: July 6, 2018
    Publication date: April 11, 2019
    Applicants: University of Washington through its Center for Commercialization, Illumina, Inc.
    Inventors: Jens H. Gundlach, Andrew Laszlo, Ian Derrington, Jeffrey G. Mandell
  • Patent number: 10017814
    Abstract: The present disclosure provides method and systems for improving nanopore-based analysis of polymers. The disclosure provides methods for selectively modifying one or more monomeric subunit(s) of a kind a pre-analyte polymer that results polymer analyte with a modified subunit. The polymer analyte produces a detectable signal in a nanopore-based system. The detectable signal, and/or its deviation from a reference signal, indicates the location of the modified subunit in the polymer analyte and, thus, permits the identification of the subunit at that location in the original pre-analyte polymer.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: July 10, 2018
    Assignees: University of Washington through its Center for Commercialization, Illumina, Inc.
    Inventors: Jens H. Gundlach, Andrew Laszlo, Ian Derrington, Jeffrey G. Mandell
  • Publication number: 20160222444
    Abstract: The present disclosure provides method and systems for improving nanopore-based analyses of polymers. The disclosure provides methods for selectively modifying one or more monomeric subunit(s) of a kind a pre-analyte polymer that results polymer analyte with a modified subunit. The polymer analyte produces a detectable signal in a nanopore-based system. The detectable signal, and/or its deviation from a reference signal, indicates the location of the modified subunit in the polymer analyte and, thus, permits the identification of the subunit at that location in the original pre-analyte polymer.
    Type: Application
    Filed: September 2, 2014
    Publication date: August 4, 2016
    Applicants: University of Washington through its Center for Commercialization, Illumina, Inc.
    Inventors: Jens H. Gundlach, Andrew Laszlo, Ian Derrington, Jeffrey G. Mandell