Patents by Inventor Ian McCabe

Ian McCabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11285888
    Abstract: An electrochromic mirror reflective element for a vehicular rearview mirror assembly includes front and rear glass substrates with an electrochromic medium disposed therebetween and with a fourth surface reflector coated at the fourth surface of the rear substrate.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: March 29, 2022
    Assignee: MAGNA MIRRORS OF AMERICA, INC.
    Inventors: John T. Uken, Michael J. Baur, Ian A. McCabe, Hamid Habibi
  • Publication number: 20220001804
    Abstract: A vehicular vision system includes a forward-viewing camera located behind and viewing through a vehicle windshield, a rearward-viewing camera located at a rear of the vehicle, and a common image processor operable for processing captured image data. A video display screen is located within the interior cabin of the vehicle viewable by a driver of the vehicle. The common image processor processes first image data captured by the forward-viewing camera to detect at least one vehicle present exterior the equipped vehicle. Responsive to the vehicle being shifted into a reverse gear and while the driver is executing a reversing maneuver, video images derived from image data captured by at least the rearward-viewing camera are displayed by the video display screen.
    Type: Application
    Filed: September 20, 2021
    Publication date: January 6, 2022
    Inventors: Andrew D. Weller, Mark L. Larson, Ian A. McCabe, Niall R. Lynam, Rodney K. Blank, Joseph P. McCaw, John T. Uken
  • Patent number: 11124121
    Abstract: A vision system for a vehicle includes a forward-viewing camera located behind and viewing through a vehicle windshield, a rearward-viewing camera located at a rear of the vehicle, and a common image processor operable for processing captured image data. A video display screen is located within the interior cabin of the vehicle viewable by a driver of the vehicle. The common image processor utilizes object detection software at least during processing of first image data captured by the forward-viewing camera to detect at least one vehicle present exterior the equipped vehicle. Responsive to the vehicle being shifted into a reverse gear and while the driver is executing a reversing maneuver, video images derived from image data captured by at least the rearward-viewing camera are displayed on the video display screen.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: September 21, 2021
    Assignee: MAGNA ELECTRONICS INC.
    Inventors: Andrew D. Weller, Mark L. Larson, Ian A. McCabe, Niall R. Lynam, Rodney K. Blank, Joseph P. McCaw, John T. Uken
  • Publication number: 20200398757
    Abstract: A vehicular rearview mirror assembly includes an electrochromic reflective element having front and rear glass substrates with an electrochromic medium disposed therebetween. The front glass substrate includes a specularly reflective perimeter layer at least partially around a perimeter border region of the rear side of the front glass substrate. At least one light source is disposed behind the perimeter layer. With the vehicular rearview mirror assembly mounted at the vehicle and when the at least one light source is electrically powered, the at least one light source emits light that passes through the perimeter border region of the second side of the front glass substrate and that is visible to a viewer viewing the first side of the front glass substrate of the electrochromic reflective element at the perimeter layer.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 24, 2020
    Inventors: Michael J. Baur, Ian A. McCabe, Hamid Habibi, Niall R. Lynam
  • Patent number: 10766421
    Abstract: An electro-optic mirror reflective element for a rearview mirror assembly for a vehicle includes a front substrate and a rear substrate. A surface of the front substrate and a surface of the rear substrate oppose one another and are spaced apart by a perimeter seal, with an electro-optic medium disposed between the surfaces and bounded by the perimeter seal. A transparent electrically conductive coating is established at the surface of the front substrate, and a specularly reflective mirror reflector is established at the surface of the rear substrate. The specularly reflective mirror reflector includes a stack of thin film layers having (i) an environmentally stable electrically conductive metallic reflecting thin film layer including chromium, (ii) an environmentally vulnerable electrically conductive metallic reflecting thin film layer and (iii) a transparent electrically conductive thin film layer including aluminum doped zinc oxide.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: September 8, 2020
    Assignee: DONNELLY CORPORATION
    Inventors: Michael J. Baur, Ian A. McCabe, Hamid Habibi, Niall R. Lynam
  • Patent number: 10661716
    Abstract: An electrically variable reflectance mirror reflective element includes front and rear glass substrates with an electrochromic medium disposed therebetween and bounded by a perimeter seal. A perimeter layer is disposed at a second surface of the front substrate proximate a perimeter edge of the front substrate. The perimeter layer conceals the perimeter seal from view by a driver of a vehicle. No part of the rear substrate extends beyond any part of the front substrate. At least a portion of the mirror reflector disposed at at least a portion of the third surface of the rear substrate extends from under the perimeter seal outward towards at least a portion of the perimeter edge of the rear substrate. The mirror reflector includes a stack of thin films that includes at least a first metal thin film and a second metal thin film.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: May 26, 2020
    Assignee: DONNELLY CORPORATION
    Inventors: Ian A. McCabe, Desaraju V. Varaprasad, Hamid Habibi, Niall R. Lynam
  • Patent number: 10538202
    Abstract: A method of making a mirror reflective element suitable for use in a vehicular exterior rearview mirror assembly includes providing front and rear substrates, and disposing an electrically conductive layer and a metallic reflector at respective surfaces thereof. With the substrates joined and with an electrochromic medium disposed in an interpane cavity, light that reflects off of the mirror reflector and passes through the electrochromic medium and the front substrate is non-spectrally selective when no voltage is applied to the electrochromic medium. At least a portion of the mirror reflector extends under the perimeter seal and towards a perimeter edge of the rear substrate. A display is disposed to the rear of the rear substrate of the mirror reflective element at a light-transmitting window. The display is operable responsive to a blind spot detector of a vehicle equipped with an exterior rearview mirror assembly that incorporates the mirror reflective element.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: January 21, 2020
    Assignee: DONNELLY CORPORATION
    Inventors: Ian A. McCabe, Hamid Habibi, Niall R. Lynam, Donald L. Bareman
  • Publication number: 20190351828
    Abstract: An electrically variable reflectance mirror reflective element includes front and rear glass substrates with an electrochromic medium disposed therebetween and bounded by a perimeter seal. A perimeter layer is disposed at a second surface of the front substrate proximate a perimeter edge of the front substrate. The perimeter layer conceals the perimeter seal from view by a driver of a vehicle. No part of the rear substrate extends beyond any part of the front substrate. At least a portion of the mirror reflector disposed at at least a portion of the third surface of the rear substrate extends from under the perimeter seal outward towards at least a portion of the perimeter edge of the rear substrate. The mirror reflector includes a stack of thin films that includes at least a first metal thin film and a second metal thin film.
    Type: Application
    Filed: July 29, 2019
    Publication date: November 21, 2019
    Inventors: Ian A. McCabe, Desaraju V. Varaprasad, Hamid Habibi, Niall R. Lynam
  • Patent number: 10363875
    Abstract: A mirror reflective element assembly for a vehicle includes an electrically variable reflectance mirror reflective element that includes front and rear substrates with an electrochromic medium disposed therebetween and bounded by a perimeter seal. A perimeter layer is disposed at a second surface of the front substrate proximate a perimeter edge of the front substrate that conceals the perimeter seal from view by a driver of a vehicle. No part of the rear substrate extends beyond any part of the front substrate. At least a portion of the mirror reflector disposed at at least a portion of the third surface of the rear substrate extends from under the perimeter seal outward towards at least a portion of the perimeter edge of the rear substrate. The mirror reflector includes a stack of thin films that includes at least a first metal thin film and a second metal thin film.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: July 30, 2019
    Assignee: DONNELLY CORPORTION
    Inventors: Ian A. McCabe, Desaraju V. Varaprasad, Hamid Habibi, Niall R. Lynam
  • Publication number: 20190217782
    Abstract: A vision system for a vehicle includes a forward-viewing camera located behind and viewing through a vehicle windshield, a rearward-viewing camera located at a rear of the vehicle, and a common image processor operable for processing captured image data. A video display screen is located within the interior cabin of the vehicle viewable by a driver of the vehicle. The common image processor utilizes object detection software at least during processing of first image data captured by the forward-viewing camera to detect at least one vehicle present exterior the equipped vehicle. Responsive to the vehicle being shifted into a reverse gear and while the driver is executing a reversing maneuver, video images derived from image data captured by at least the rearward-viewing camera are displayed on the video display screen.
    Type: Application
    Filed: March 25, 2019
    Publication date: July 18, 2019
    Inventors: Andrew D. Weller, Mark L. Larson, Ian A. McCabe, Niall R. Lynam, Rodney K. Blank, Joseph P. McCaw, John T. Uken
  • Publication number: 20190143914
    Abstract: An electrochromic mirror reflective element for a vehicular rearview mirror assembly includes front and rear glass substrates with an electrochromic medium disposed therebetween and with a fourth surface reflector coated at the fourth surface of the rear substrate.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 16, 2019
    Inventors: John T. Uken, Michael J. Baur, Ian A. McCabe, Hamid Habibi
  • Patent number: 10239457
    Abstract: A vision system for a vehicle includes a forward-viewing camera located behind and viewing through a vehicle windshield, a rear camera located at a rear of the vehicle, and a common image processor operable for processing captured image data. A video display screen is located within the interior cabin of the vehicle viewable by a driver of the vehicle. The common image processor utilizes object detection software at least during processing of first image data captured by the forward-viewing camera to detect at least one vehicle present exterior the equipped vehicle. Responsive to the vehicle being shifted into a reverse gear and while the driver is executing a reversing maneuver, video images derived from image data captured by at least the rear camera are displayed on the video display screen.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: March 26, 2019
    Assignee: MAGNA ELECTRONICS INC.
    Inventors: Andrew D. Weller, Mark L. Larson, Ian A. McCabe, Niall R. Lynam, Rodney K. Blank, Joseph P. McCaw, John T. Uken
  • Publication number: 20190071019
    Abstract: An electro-optic mirror reflective element for a rearview mirror assembly for a vehicle includes a front substrate and a rear substrate. A surface of the front substrate and a surface of the rear substrate oppose one another and are spaced apart by a perimeter seal, with an electro-optic medium disposed between the surfaces and bounded by the perimeter seal. A transparent electrically conductive coating is established at the surface of the front substrate, and a specularly reflective mirror reflector is established at the surface of the rear substrate. The specularly reflective mirror reflector includes a stack of thin film layers having (i) an environmentally stable electrically conductive metallic reflecting thin film layer including chromium, (ii) an environmentally vulnerable electrically conductive metallic reflecting thin film layer and (iii) a transparent electrically conductive thin film layer including aluminum doped zinc oxide.
    Type: Application
    Filed: November 12, 2018
    Publication date: March 7, 2019
    Inventors: Michael J. Baur, Ian A. McCabe, Hamid Habibi, Niall R. Lynam
  • Patent number: 10179555
    Abstract: A method for making electrical connection to a mirror reflective element for a vehicular rearview mirror assembly includes providing a mirror reflective element having a front substrate and a rear substrate with an electro-optic medium disposed therebetween and in contact with a transparent conductive coating and a third surface reflector. A metallic electrical connector is provided that includes an attachment portion and a wire receiving portion. An electrical wire is inserted in the wire receiving portion such that at least one tang of the wire receiving portion engages the electrical wire to secure the electrical wire in the wire receiving portion and to make electrically-conductive connection with the electrical wire. The attachment portion is attached at the front or rear substrate to attach the electrical connector at the mirror reflective element such that the attachment portion electrically conductively connects to the transparent conductive coating or the third surface reflector.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: January 15, 2019
    Assignee: MAGNA MIRRORS OF AMERICA, INC.
    Inventors: John T. Uken, Michael J. Baur, Ian A. McCabe, Hamid Habibi
  • Publication number: 20190009724
    Abstract: A vision system for a vehicle includes a forward-viewing camera located behind and viewing through a vehicle windshield, a rear camera located at a rear of the vehicle, and a common image processor operable for processing captured image data. A video display screen is located within the interior cabin of the vehicle viewable by a driver of the vehicle. The common image processor utilizes object detection software at least during processing of first image data captured by the forward-viewing camera to detect at least one vehicle present exterior the equipped vehicle. Responsive to the vehicle being shifted into a reverse gear and while the driver is executing a reversing maneuver, video images derived from image data captured by at least the rear camera are displayed on the video display screen.
    Type: Application
    Filed: August 20, 2018
    Publication date: January 10, 2019
    Inventors: Andrew D. Weller, Mark L. Larson, Ian A. McCabe, Niall R. Lynam, Rodney K. Blank, Joseph P. McCaw, John T. Uken
  • Publication number: 20180345864
    Abstract: A mirror reflective element assembly for a vehicle includes an electrically variable reflectance mirror reflective element that includes front and rear substrates with an electrochromic medium disposed therebetween and bounded by a perimeter seal. A perimeter layer is disposed at a second surface of the front substrate proximate a perimeter edge of the front substrate that conceals the perimeter seal from view by a driver of a vehicle. No part of the rear substrate extends beyond any part of the front substrate. At least a portion of the mirror reflector disposed at at least a portion of the third surface of the rear substrate extends from under the perimeter seal outward towards at least a portion of the perimeter edge of the rear substrate. The mirror reflector includes a stack of thin films that includes at least a first metal thin film and a second metal thin film.
    Type: Application
    Filed: July 23, 2018
    Publication date: December 6, 2018
    Inventors: Ian A. McCabe, Desaraju V. Varaprasad, Hamid Habibi, Niall R. Lynam
  • Patent number: 10124733
    Abstract: An electro-optic mirror reflective element for a rearview mirror assembly for a vehicle includes a front substrate and a rear substrate. A surface of the front substrate and a surface of the rear substrate oppose each other and are spaced apart by a perimeter seal, with an electro-optic medium disposed between the surfaces and bounded by the perimeter seal. A transparent electrically conductive coating is established at the surface of the front substrate, and a specularly reflective mirror reflector is established at the surface of the rear substrate. The specularly reflective mirror reflector includes a stack of thin film layers having (i) an environmentally stable electrically conductive metallic reflecting thin film layer, (ii) an environmentally vulnerable electrically conductive metallic reflecting thin film layer and (iii) a transparent electrically conductive thin film layer. The transparent electrically conductive thin film layer includes aluminum doped zinc oxide.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: November 13, 2018
    Assignee: DONNELLY CORPORATION
    Inventors: Michael J. Baur, Ian A. McCabe, Hamid Habibi, Niall R. Lynam
  • Patent number: 10053013
    Abstract: A vision system for a vehicle includes a forward-viewing camera located behind and viewing through the vehicle windshield, a rear backup camera located at the rear of the vehicle, and a common image processor operable for processing captured image data. A video display screen is located within the interior cabin of the vehicle viewable by a driver of the vehicle. Responsive to the vehicle being shifted into a reverse gear and while the driver is executing a reversing maneuver, video images derived from image data captured by at least the rear backup camera are displayed on the video display screen. When the vehicle is travelling forward, the common image processor processes image data captured by the forward-viewing camera for a lane departure warning system of the vehicle and for a headlamp control system of the vehicle and/or a traffic sign recognition system of the vehicle.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: August 21, 2018
    Assignee: MAGNA ELECTRONICS INC.
    Inventors: Andrew D. Weller, Mark L. Larson, Ian A. McCabe, Niall R. Lynam, Rodney K. Blank, Joseph P. McCaw, John T. Uken
  • Patent number: 10029616
    Abstract: A mirror reflective element assembly for a vehicle includes an electrically variable reflectance mirror reflective element that includes front and rear substrates with an electrochromic medium disposed therebetween and bounded by a perimeter seal. A perimeter layer is disposed at a second surface of the front substrate proximate a perimeter edge of the front substrate that conceals the perimeter seal from view by a driver of a vehicle. At least a portion of the mirror reflector extends from under the perimeter seal outward towards at least a portion of the perimeter edge of the rear substrate. The mirror reflective element includes a more curved outboard region and a less curved inboard region. A laser-etched demarcation may demarcate the more curved outboard region of the mirror reflective element from the less curved inboard region of the mirror reflective element.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: July 24, 2018
    Assignee: DONNELLY CORPORATION
    Inventors: Ian A. McCabe, Desaraju V. Varaprasad, Hamid Habibi, Niall R. Lynam
  • Publication number: 20180147993
    Abstract: A method of making a mirror reflective element suitable for use in a vehicular exterior rearview mirror assembly includes providing front and rear substrates, and disposing an electrically conductive layer and a metallic reflector at respective surfaces thereof. With the substrates joined and with an electrochromic medium disposed in an interpane cavity, light that reflects off of the mirror reflector and passes through the electrochromic medium and the front substrate is non-spectrally selective when no voltage is applied to the electrochromic medium. At least a portion of the mirror reflector extends under the perimeter seal and towards a perimeter edge of the rear substrate. A display is disposed to the rear of the rear substrate of the mirror reflective element at a light-transmitting window. The display is operable responsive to a blind spot detector of a vehicle equipped with an exterior rearview mirror assembly that incorporates the mirror reflective element.
    Type: Application
    Filed: January 24, 2018
    Publication date: May 31, 2018
    Inventors: Ian A. McCabe, Hamid Habibi, Niall R. Lynam, Donald L. Bareman