Patents by Inventor Ian McDowall

Ian McDowall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10254533
    Abstract: In a minimally invasive surgical system, an image capture unit includes a prism assembly and sensor assembly. The prism assembly includes a beam splitter, while the sensor assembly includes coplanar image capture sensors. Each of the coplanar image capture sensors has a common front end optical structure, e.g., the optical structure distal to the image capture unit is the same for each of the sensors. A controller enhances images acquired by the coplanar image capture sensors. The enhanced images may include (a) visible images with enhanced feature definition, in which a particular feature in the scene is emphasized to the operator of minimally invasive surgical system; (b) images having increased image apparent resolution; (c) images having increased dynamic range; (d) images displayed in a way based on a pixel color component vector having three or more color components; and (e) images having extended depth of field.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: April 9, 2019
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Ian McDowall
  • Publication number: 20180116756
    Abstract: A surgical site is simultaneously illuminated by less than all the visible color components that make up visible white light, and a fluorescence excitation illumination component by an illuminator in a minimally invasive surgical system. An image capture system acquires an image for each of the visible color components illuminating the surgical site and a fluorescence image, which is excited by the fluorescence excitation component from the illuminator. The minimally invasive surgical system uses the acquired images to generate a background black and white image of the surgical site. The acquired fluorescence image is superimposed on the background black and white image, and is highlighted in a selected color, e.g., green. The background black and white image with the superimposed highlighted fluorescence image is displayed for a user of the system. The highlighted fluorescence image identifies tissue of clinical interest.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 3, 2018
    Applicant: Intuitive Surgical Operations, Inc.
    Inventors: Ian McDowall, Christopher J. Hasser
  • Publication number: 20170128152
    Abstract: A surgical site is simultaneously illuminated by less than all the visible color components that make up visible white light, and a fluorescence excitation illumination component by an illuminator in a minimally invasive surgical system. An image capture system acquires an image for each of the visible color components illuminating the surgical site and a fluorescence image, which is excited by the fluorescence excitation component from the illuminator. The minimally invasive surgical system uses the acquired images to generate a background black and white image of the surgical site. The acquired fluorescence image is superimposed on the background black and white image, and is highlighted in a selected color, e.g., green. The background black and white image with the superimposed highlighted fluorescence image is displayed for a user of the system. The highlighted fluorescence image identifies tissue of clinical interest.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventors: Ian McDowall, Christopher J. Hasser
  • Patent number: 9645395
    Abstract: A head-mounted display (HMD) allows a user to view a virtual environment. The HMD displays a field of view to the user. However, the user may experience simulator sickness or motion sickness from viewing the field of view. The HMD is connected to a sensor which can monitor the user. By monitoring the user's physiological state, the user's simulator sickness can be detected or predicted. To reduce the negative effects, the field of view can be throttled. The field of view can also be throttled in order to provide a better user experience even if the user does not experience sickness.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: May 9, 2017
    Inventors: Mark Bolas, J. Adam Jones, Ian McDowall, Evan Suma
  • Patent number: 9581821
    Abstract: Compact and low mass augmented and fully virtual head mounted display designs are disclosed. The disclosed displays employ a display located between the eye and the main optical element of the head mounted display. These designs additionally afford the ability to support augmented reality displays because the user can see both the virtual image from the display and the real world if desired. The designs use semi-transparent displays where either the display emits circularly polarized light or the displays which emits light from one surface or the view of the display directly from the eye is obscured.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: February 28, 2017
    Assignee: Fakespace Labs, Inc.
    Inventors: Ian McDowall, Mark Bolas
  • Publication number: 20150370074
    Abstract: Compact and low mass augmented and fully virtual head mounted display designs are disclosed. The disclosed displays employ a display located between the eye and the main optical element of the head mounted display. These designs additionally afford the ability to support augmented reality displays because the user can see both the virtual image from the display and the real world if desired. The designs use semi-transparent displays where either the display emits circularly polarized light or the displays which emits light from one surface or the view of the display directly from the eye is obscured.
    Type: Application
    Filed: June 24, 2015
    Publication date: December 24, 2015
    Applicant: Fakespace Labs, Inc.
    Inventors: Ian McDowall, Mark Bolas
  • Patent number: 9055962
    Abstract: A surgical instrument that includes a housing linkable with a manipulator arm of a robotic surgical system, a shaft coupled to the housing, a force transducer on a distal end of the shaft, and a plurality of fiber optic strain gauges on the force transducer is disclosed. The plurality of strain gauges are coupled to a fiber optic splitter or an arrayed waveguide grating (AWG) multiplexer, which can be coupled to a fiber optic connector. A wrist joint coupled to an end effector is coupled to a distal end of the force transducer. A robotic surgical manipulator that includes a base link coupled to a distal end of a manipulator positioning system, and a distal link with an instrument interface, and a fiber optic connector optically linkable to a surgical instrument. A method of passing data between an instrument and a manipulator via optical connectors is also provided.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: June 16, 2015
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Stephen J. Blumenkranz, Gregory W. Dachs, II, Ian McDowall, Christopher J. Hasser
  • Patent number: 9019345
    Abstract: A minimally invasive surgical system includes a scene anti-bloom process that allows switching between imaging modes on a stereoscopic display without causing a surgeon to look-away or being momentarily distracted by sudden changes in overall scene luminance. The process receives a switch from a first imaging mode to a second imaging mode. An overall scene luminance of a scene in the first imaging mode is less than an overall scene luminance of a scene in the second imaging mode. The process delays the switch to the second imaging mode until after an illumination output level of a visible illumination source has changed to a higher output level, and then switches to the second imaging mode.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: April 28, 2015
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Patrick O'Grady, Ian McDowall, Brian D. Hoffman
  • Publication number: 20140327748
    Abstract: An interactive, autostereoscopic system for displaying an object in 3D includes a mirror configured to spin around a vertical axis when actuated by a motor, a high speed video projector, and a processing system including a graphics card interfaced to the video projector. An anisotropic reflector is bonded onto an inclined surface of the mirror. The video projector projects video signals of the object from the projector onto the inclined surface of the mirror while the mirror is spinning, so that light rays representing the video signals are redirected toward a field of view of a 360 degree range. The processing system renders the redirected light rays so as to interactively generate a horizontal-parallax 3D display of the object. Vertical parallax can be included in the display by adjusting vertically the displayed views of the object, in response to tracking of viewer motion by a tracking system.
    Type: Application
    Filed: March 25, 2013
    Publication date: November 6, 2014
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Paul E. Debevec, Andrew Jones, Mark Bolas, Ian McDowall
  • Publication number: 20140268356
    Abstract: A head-mounted display (HMD) allows a user to view a virtual environment. The HMD displays a field of view to the user. However, the user may experience simulator sickness or motion sickness from viewing the field of view. The HMD is connected to a sensor which can monitor the user. By monitoring the user's physiological state, the user's simulator sickness can be detected or predicted. To reduce the negative effects, the field of view can be throttled. The field of view can also be throttled in order to provide a better user experience even if the user does not experience sickness.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Mark Bolas, J. Adam Jones, Ian McDowall, Evan Suma
  • Publication number: 20140225992
    Abstract: In a minimally invasive surgical system, an image capture unit includes a prism assembly and sensor assembly. The prism assembly includes a beam splitter, while the sensor assembly includes coplanar image capture sensors. Each of the coplanar image capture sensors has a common front end optical structure, e.g., the optical structure distal to the image capture unit is the same for each of the sensors. A controller enhances images acquired by the coplanar image capture sensors. The enhanced images may include (a) visible images with enhanced feature definition, in which a particular feature in the scene is emphasized to the operator of minimally invasive surgical system; (b) images having increased image apparent resolution; (c) images having increased dynamic range; (d) images displayed in a way based on a pixel color component vector having three or more color components; and (e) images having extended depth of field.
    Type: Application
    Filed: April 22, 2014
    Publication date: August 14, 2014
    Applicant: Intuitive Surgical Operations, Inc.
    Inventor: IAN McDOWALL
  • Patent number: 8784301
    Abstract: In a minimally invasive surgical system, an image capture unit includes a prism assembly and sensor assembly. The prism assembly includes a beam splitter, while the sensor assembly includes coplanar image capture sensors. Each of the coplanar image capture sensors has a common front end optical structure, e.g., the optical structure distal to the image capture unit is the same for each of the sensors. A controller enhances images acquired by the coplanar image capture sensors. The enhanced images may include (a) visible images with enhanced feature definition, in which a particular feature in the scene is emphasized to the operator of minimally invasive surgical system; (b) images having increased image apparent resolution; (c) images having increased dynamic range; (d) images displayed in a way based on a pixel color component vector having three or more color components; and (e) images having extended depth of field.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: July 22, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Ian McDowall
  • Patent number: 8767284
    Abstract: The effective focal length of an optical system can be electronically controlled using switchable wave plates in conjunction with polarized light.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: July 1, 2014
    Assignee: Fakespace Labs, Inc.
    Inventors: Ian McDowall, Mark Bolas
  • Patent number: 8764633
    Abstract: In a minimally invasive surgical system, an image capture unit includes a prism assembly and sensor assembly. The prism assembly includes a beam splitter, while the sensor assembly includes coplanar image capture sensors. Each of the coplanar image capture sensors has a common front end optical structure, e.g., the optical structure distal to the image capture unit is the same for each of the sensors. A controller enhances images acquired by the coplanar image capture sensors. The enhanced images may include (a) visible images with enhanced feature definition, in which a particular feature in the scene is emphasized to the operator of minimally invasive surgical system; (b) images having increased image apparent resolution; (c) images having increased dynamic range; (d) images displayed in a way based on a pixel color component vector having three or more color components; and (e) images having extended depth of field.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: July 1, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Ian McDowall
  • Patent number: 8734328
    Abstract: In a minimally invasive surgical system, an image capture unit includes a prism assembly and sensor assembly. The prism assembly includes a beam splitter, while the sensor assembly includes coplanar image capture sensors. Each of the coplanar image capture sensors has a common front end optical structure, e.g., the optical structure distal to the image capture unit is the same for each of the sensors. A controller enhances images acquired by the coplanar image capture sensors. The enhanced images may include (a) visible images with enhanced feature definition, in which a particular feature in the scene is emphasized to the operator of minimally invasive surgical system; (b) images having increased image apparent resolution; (c) images having increased dynamic range; (d) images displayed in a way based on a pixel color component vector having three or more color components; and (e) images having extended depth of field.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: May 27, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Ian McDowall
  • Patent number: 8706184
    Abstract: In one embodiment of the invention, an apparatus includes a display device. The display device displays a desaturated image of tissue captured in the visible electro-magnetic (EM) spectrum from a body cavity; and a first color enhanced image combined with the desaturated image. The first color enhanced image represents the first data captured from the body cavity outside the visible electromagnetic spectrum. The relative brightness between the desaturated image and the first color enhanced image is set to emphasize the first data over the tissue captured in the visible electromagnetic spectrum to provide improved information content.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: April 22, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Catherine Mohr, Ian McDowall, Paul Mohr
  • Patent number: 8684914
    Abstract: In a minimally invasive surgical system, an image capture unit includes a prism assembly and sensor assembly. The prism assembly includes a beam splitter, while the sensor assembly includes coplanar image capture sensors. Each of the coplanar image capture sensors has a common front end optical structure, e.g., the optical structure distal to the image capture unit is the same for each of the sensors. A controller enhances images acquired by the coplanar image capture sensors. The enhanced images may include (a) visible images with enhanced feature definition, in which a particular feature in the scene is emphasized to the operator of minimally invasive surgical system; (b) images having increased image apparent resolution; (c) images having increased dynamic range; (d) images displayed in a way based on a pixel color component vector having three or more color components; and (e) images having extended depth of field.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: April 1, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Ian McDowall, John Stern
  • Patent number: 8672838
    Abstract: In a minimally invasive surgical system, an image capture unit includes a prism assembly and sensor assembly. The prism assembly includes a beam splitter, while the sensor assembly includes coplanar image capture sensors. Each of the coplanar image capture sensors has a common front end optical structure, e.g., the optical structure distal to the image capture unit is the same for each of the sensors. A controller enhances images acquired by the coplanar image capture sensors. The enhanced images may include (a) visible images with enhanced feature definition, in which a particular feature in the scene is emphasized to the operator of minimally invasive surgical system; (b) images having increased image apparent resolution; (c) images having increased dynamic range; (d) images displayed in a way based on a pixel color component vector having three or more color components; and (e) images having extended depth of field.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 18, 2014
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Ian McDowall
  • Publication number: 20130331650
    Abstract: A surgical instrument that includes a housing linkable with a manipulator arm of a robotic surgical system, a shaft coupled to the housing, a force transducer on a distal end of the shaft, and a plurality of fiber optic strain gauges on the force transducer is disclosed. The plurality of strain gauges are coupled to a fiber optic splitter or an arrayed waveguide grating (AWG) multiplexer, which can be coupled to a fiber optic connector. A wrist joint coupled to an end effector is coupled to a distal end of the force transducer. A robotic surgical manipulator that includes a base link coupled to a distal end of a manipulator positioning system, and a distal link with an instrument interface, and a fiber optic connector optically linkable to a surgical instrument. A method of passing data between an instrument and a manipulator via optical connectors is also provided.
    Type: Application
    Filed: May 10, 2013
    Publication date: December 12, 2013
    Applicant: Intuitive Surgical, Inc.
    Inventors: Stephen J. Blumenkranz, Gregory W. Dachs, II, Ian McDowall, Christopher J. Hasser
  • Patent number: 8463439
    Abstract: In one embodiment, a surgical instrument includes a housing linkable with a manipulator arm of a robotic surgical system, a shaft operably coupled to the housing, a force transducer on a distal end of the shaft, and a plurality of fiber optic strain gauges on the force transducer. In one example, the plurality of strain gauges are operably coupled to a fiber optic splitter or an arrayed waveguide grating (AWG) multiplexer. A fiber optic connector is operably coupled to the fiber optic splitter or the AWG multiplexer. A wrist joint is operably coupled to a distal end of the force transducer, and an end effector is operably coupled to the wrist joint. In another embodiment, a robotic surgical manipulator includes a base link operably coupled to a distal end of a manipulator positioning system, and a distal link movably coupled to the base link, wherein the distal link includes an instrument interface and a fiber optic connector optically linkable to a surgical instrument.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: June 11, 2013
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Stephen J. Blumenkranz, Gregory W. Dachs, II, Ian McDowall, Christopher J. Hasser