Patents by Inventor Ian Michael Dinsmore

Ian Michael Dinsmore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10844793
    Abstract: Systems and methods for controlling a fluid-based system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states, the dynamic states input to an open loop model based on the model operating mode, where the open loop model generates current state derivatives, solver state errors, and synthesized parameters as a function of the dynamic states and a model input vector. A constraint on the current state derivatives and solver state errors is based on mathematical abstractions of physical laws that govern behavior of a component using a material temperature utility. The model processor may further include an estimate state module for determining an estimated state of the model based on at least one of a prior state, the current state derivatives, the solver state errors, and the synthesized parameters.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: November 24, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Boris Karpman, Ian Michael Dinsmore, Richard P. Meisner, John Shade
  • Patent number: 10767563
    Abstract: Systems and methods for controlling a fluid-based system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states, the dynamic states input to an open loop model based on the model operating mode, where the open loop model generates current state derivatives, solver state errors, and synthesized parameters as a function of the dynamic states and a model input vector. A constraint on the state derivatives and solver state errors is based a series of utilities that are based on mathematical abstractions of physical laws that govern behavior of the component. The model processor may include an estimate state module for determining an estimated state of the model based on at least one of a prior state, the current state derivatives, the solver state errors, and the synthesized parameters.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: September 8, 2020
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Boris Karpman, Thomas Niemczycki, Ian Michael Dinsmore, David Sembiante, Robert H. Luppold
  • Publication number: 20190107057
    Abstract: Systems and methods for controlling a fluid-based system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states, the dynamic states input to an open loop model based on the model operating mode, where the open loop model generates current state derivatives, solver state errors, and synthesized parameters as a function of the dynamic states and a model input vector. A constraint on the current state derivatives and solver state errors is based on mathematical abstractions of physical laws that govern behavior of a component using a material temperature utility. The model processor may further include an estimate state module for determining an estimated state of the model based on at least one of a prior state, the current state derivatives, the solver state errors, and the synthesized parameters.
    Type: Application
    Filed: November 30, 2018
    Publication date: April 11, 2019
    Inventors: Boris Karpman, Ian Michael Dinsmore, Richard P. Meisner, John Shade
  • Publication number: 20190093566
    Abstract: Systems and methods for controlling a fluid-based system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states, the dynamic states input to an open loop model based on the model operating mode, where the open loop model generates current state derivatives, solver state errors, and synthesized parameters as a function of the dynamic states and a model input vector. A constraint on the state derivatives and solver state errors is based a series of utilities that are based on mathematical abstractions of physical laws that govern behavior of the component. The model processor may include an estimate state module for determining an estimated state of the model based on at least one of a prior state, the current state derivatives, the solver state errors, and the synthesized parameters.
    Type: Application
    Filed: November 29, 2018
    Publication date: March 28, 2019
    Inventors: Boris Karpman, Thomas Niemczycki, Ian Michael Dinsmore, David Sembiante, Robert H. Luppold
  • Patent number: 10190503
    Abstract: Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode, wherein the open loop model generates a current state model as a function of the dynamic states and the model input, wherein a constraint on the current state model is based a series of cycle synthesis modules, each member of the series of cycle synthesis modules modeling a component of a cycle of the control system and including a series of utilities, the utilities are based on mathematical abstractions of physical properties associated with the component, the series of cycle synthesis modules including a rotary apparatus module which estimates a tip clearance between the rotor and the rotor case.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 29, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Boris Karpman, Ian Michael Dinsmore, Richard P. Neisner, John L. Shade
  • Patent number: 10161313
    Abstract: Systems and methods for controlling a fluid based system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states, the dynamic states input to an open loop model based on the model operating mode, where the open loop model generates current state derivatives, solver state errors, and synthesized parameters as a function of the dynamic states and a model input vector. A constraint on the state derivatives and solver state errors is based on a material temperature utility for determining a material temperature associated with a component of the cycle of the control system. The model processor may include an estimate state module for determining an estimated state of the model based on at least one of a prior state, the current state derivatives, the solver state errors, and the synthesized parameters.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: December 25, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Boris Karpman, Ian Michael Dinsmore, Richard P. Meisner, John L. Shade
  • Patent number: 10145307
    Abstract: Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode, the model generates current state derivatives and synthesized parameters as a function of the dynamic states and the model input, wherein a constraint on the current state derivatives is based a series of modules, each member of the series of modules arranged in at least a primary stream group and a secondary stream group corresponding to a component of the system. The model processor may further include an estimate state module for determining an estimated state of the model.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: December 4, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Boris Karpman, Thomas Niemczycki, Ian Michael Dinsmore, David Sembiante, Robert H. Luppold
  • Publication number: 20160017814
    Abstract: Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode, wherein the open loop model generates a current state model as a function of the dynamic states and the model input, wherein a constraint on the current state model is based a series of cycle synthesis modules, each member of the series of cycle synthesis modules modeling a component of a cycle of the control system and including a series of utilities, the utilities are based on mathematical abstractions of physical properties associated with the component.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 21, 2016
    Inventors: Boris Karpman, Ian Michael Dinsmore, Richard P. Meisner, John L. Shade
  • Publication number: 20160003165
    Abstract: Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode, wherein the open loop model generates a current state model as a function of the dynamic states and the model input, wherein a constraint on the current state model is based a series of cycle synthesis modules, each member of the series of cycle synthesis modules modeling a component of a cycle of the control system and including a series of utilities, the utilities are based on mathematical abstractions of physical properties associated with the component. The model processor may further include an estimate state module for determining an estimated state of the model based on a prior state model output and the current state model of the open loop model.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 7, 2016
    Applicant: United Technologies Corporation
    Inventors: Boris Karpman, Thomas Niemczycki, Ian Michael Dinsmore, David Sembiante, Robert H. Luppold, Matthew Donald
  • Publication number: 20150378364
    Abstract: Systems and methods for controlling a fluid based engineering system are disclosed. The systems and methods may include a model processor for generating a model output, the model processor including a set state module for setting dynamic states of the model processor, the dynamic states input to an open loop model based on the model operating mode, wherein the open loop model generates a current state model as a function of the dynamic states and the model input, wherein a constraint on the current state model is based a series of cycle synthesis modules, each member of the series of cycle synthesis modules modeling a component of a cycle of the control system and including a series of utilities, the utilities are based on mathematical abstractions of physical properties associated with the component, the series of cycle synthesis modules including a rotary apparatus module which estimates a tip clearance between the rotor and the rotor case.
    Type: Application
    Filed: March 14, 2014
    Publication date: December 31, 2015
    Inventors: Boris Karpman, Ian Michael Dinsmore, Richard P. Neisner, John L. Shade