Patents by Inventor Ian Millard

Ian Millard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11934165
    Abstract: Described herein are systems, methods, devices, and other techniques for implementing smart windows, smart home systems that include smart windows, and user devices and applications for control thereof. A smart window, or photovoltaic window, may include a photovoltaic configured to generate electrical power from incident light onto the photovoltaic window, store the electrical power, and send the electrical power to an electronics package or various electrical loads including a wireless communication system, sensors, or window functions. The photovoltaic window may communicate with various smart home system devices such as hub devices and user devices, which may include the reception of control data at the photovoltaic window and the transmission of sensor data captured by the window sensors.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: March 19, 2024
    Assignee: Ubiquitous Energy, Inc.
    Inventors: Miles C. Barr, Ian Millard, Rachel Molaro, Susan Stone, Veeral Hardev, Christopher Traverse, Anthony Sagneri, David Maikowski, Edwin Hathaway, Bradley J. Gleeson
  • Patent number: 11860596
    Abstract: Described herein are systems, methods, devices, and other techniques for implementing smart windows, smart home systems that include smart windows, and user devices and applications for control thereof. A smart window, or photovoltaic window, may include a photovoltaic configured to generate electrical power from incident light onto the photovoltaic window, store the electrical power, and send the electrical power to an electronics package or various electrical loads including a wireless communication system, sensors, or window functions. The photovoltaic window may communicate with various smart home system devices such as hub devices and user devices, which may include the reception of control data at the photovoltaic window and the transmission of sensor data captured by the window sensors.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: January 2, 2024
    Assignee: Ubiquitous Energy, Inc.
    Inventors: Miles C. Barr, Ian Millard, Rachel Molaro, Susan Stone, Veeral Hardev, Christopher Traverse, Anthony Sagneri, David Maikowski, Edwin Hathaway, Bradley J. Gleeson
  • Patent number: 11782408
    Abstract: Described herein are systems, methods, devices, and other techniques for implementing smart windows, smart home systems that include smart windows, and user devices and applications for control thereof. A smart window, or photovoltaic window, may include a photovoltaic configured to generate electrical power from incident light onto the photovoltaic window, store the electrical power, and send the electrical power to an electronics package or various electrical loads including a wireless communication system, sensors, or window functions. The photovoltaic window may communicate with various smart home system devices such as hub devices and user devices, which may include the reception of control data at the photovoltaic window and the transmission of sensor data captured by the window sensors.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: October 10, 2023
    Assignee: Ubiquitous Energy, Inc.
    Inventors: Miles C. Barr, Ian Millard, Rachel Molaro, Susan Stone, Veeral Hardev, Christopher Traverse, Anthony Sagneri, David Maikowski, Edwin Hathaway, Bradley J. Gleeson
  • Patent number: 11545589
    Abstract: A photovoltaic module includes a first transparent electrode layer characterized by a first sheet resistance, a second transparent electrode layer, and a photovoltaic material layer. The photovoltaic material layer is located between the first transparent electrode layer and the second transparent electrode layer. The photovoltaic module also includes a first busbar having a second sheet resistance lower than the first sheet resistance. The first transparent electrode layer, the second transparent electrode layer, and the photovoltaic material layer have an aligned region that forms a central transparent area of the photovoltaic module. The central transparent area including a plurality of sides. The first busbar is in contact with the first transparent electrode layer adjacent to at least a portion of each of the plurality of sides of the central transparent area.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: January 3, 2023
    Assignee: UBIQUITOUS ENERGY, INC.
    Inventors: Miles Barr, Ian Millard, Rachel Molaro, Richa Pandey
  • Publication number: 20220128960
    Abstract: Described herein are systems, methods, devices, and other techniques for implementing smart windows, smart home systems that include smart windows, and user devices and applications for control thereof. A smart window, or photovoltaic window, may include a photovoltaic configured to generate electrical power from incident light onto the photovoltaic window, store the electrical power, and send the electrical power to an electronics package or various electrical loads including a wireless communication system, sensors, or window functions. The photovoltaic window may communicate with various smart home system devices such as hub devices and user devices, which may include the reception of control data at the photovoltaic window and the transmission of sensor data captured by the window sensors.
    Type: Application
    Filed: October 27, 2021
    Publication date: April 28, 2022
    Applicant: Ubiquitous Energy, Inc.
    Inventors: Miles C. Barr, Ian Millard, Rachel Molaro, Susan Stone, Veeral Hardev, Christopher Traverse, Anthony Sagneri, David Maikowski, Edwin Hathaway, Bradley J. Gleeson
  • Publication number: 20220128961
    Abstract: Described herein are systems, methods, devices, and other techniques for implementing smart windows, smart home systems that include smart windows, and user devices and applications for control thereof. A smart window, or photovoltaic window, may include a photovoltaic configured to generate electrical power from incident light onto the photovoltaic window, store the electrical power, and send the electrical power to an electronics package or various electrical loads including a wireless communication system, sensors, or window functions. The photovoltaic window may communicate with various smart home system devices such as hub devices and user devices, which may include the reception of control data at the photovoltaic window and the transmission of sensor data captured by the window sensors.
    Type: Application
    Filed: October 27, 2021
    Publication date: April 28, 2022
    Applicant: Ubiquitous Energy, Inc.
    Inventors: Miles C. Barr, Ian Millard, Rachel Molaro, Susan Stone, Veeral Hardev, Christopher Traverse, Anthony Sagneri, David Maikowski, Edwin Hathaway, Bradley J. Gleeson
  • Publication number: 20220128959
    Abstract: Described herein are systems, methods, devices, and other techniques for implementing smart windows, smart home systems that include smart windows, and user devices and applications for control thereof. A smart window, or photovoltaic window, may include a photovoltaic configured to generate electrical power from incident light onto the photovoltaic window, store the electrical power, and send the electrical power to an electronics package or various electrical loads including a wireless communication system, sensors, or window functions. The photovoltaic window may communicate with various smart home system devices such as hub devices and user devices, which may include the reception of control data at the photovoltaic window and the transmission of sensor data captured by the window sensors.
    Type: Application
    Filed: October 27, 2021
    Publication date: April 28, 2022
    Applicant: Ubiquitous Energy, Inc.
    Inventors: Miles C. Barr, Ian Millard, Rachel Molaro, Susan Stone, Veeral Hardev, Christopher Traverse, Anthony Sagneri, David Maikowski, Edwin Hathaway, Bradley J. Gleeson
  • Publication number: 20210013353
    Abstract: A photovoltaic module includes a first transparent electrode layer characterized by a first sheet resistance, a second transparent electrode layer, and a photovoltaic material layer. The photovoltaic material layer is located between the first transparent electrode layer and the second transparent electrode layer. The photovoltaic module also includes a first busbar having a second sheet resistance lower than the first sheet resistance. The first transparent electrode layer, the second transparent electrode layer, and the photovoltaic material layer have an aligned region that forms a central transparent area of the photovoltaic module. The central transparent area including a plurality of sides. The first busbar is in contact with the first transparent electrode layer adjacent to at least a portion of each of the plurality of sides of the central transparent area.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 14, 2021
    Applicant: UBIQUITOUS ENERGY, INC.
    Inventors: Miles Barr, Ian Millard, Rachel Molaro, Richa Pandey
  • Publication number: 20200335640
    Abstract: An insulated glass unit (IGU) includes a first glass lite and a solar cell adjacent the first glass lite. The solar cell includes one or more busbars. The IGU also includes a spacer frame joined to the solar cell or the first glass lite and including a plurality of electrical conductors passing through the spacer frame. Each of the plurality of electrical conductors is electrically connected to one of the one or more busbars. The IGU further includes a second glass lite joined to the spacer frame.
    Type: Application
    Filed: April 17, 2020
    Publication date: October 22, 2020
    Applicant: Ubiquitous Energy, Inc.
    Inventor: Ian Millard
  • Patent number: 10741713
    Abstract: A photovoltaic module includes a first transparent electrode layer characterized by a first sheet resistance, a second transparent electrode layer, and a photovoltaic material layer. The photovoltaic material layer is located between the first transparent electrode layer and the second transparent electrode layer. The photovoltaic module also includes a first busbar having a second sheet resistance lower than the first sheet resistance. The first transparent electrode layer, the second transparent electrode layer, and the photovoltaic material layer have an aligned region that forms a central transparent area of the photovoltaic module. The central transparent area including a plurality of sides. The first busbar is in contact with the first transparent electrode layer adjacent to at least a portion of each of the plurality of sides of the central transparent area.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: August 11, 2020
    Assignee: UBIQUITOUS ENERGY, INC.
    Inventors: Miles Barr, Ian Millard, Rachel Molaro, Richa Pandey
  • Publication number: 20190036480
    Abstract: An electricity generating window includes a first glass pane, a second glass pane, and a photovoltaic device formed on an inner surface of the first glass pane or an inner surface of the second glass pane. The photovoltaic device includes a first transparent electrode layer, a second transparent electrode layer, and one or more active layers configured to transmit visible light and absorb ultraviolet or near-infrared light. In some embodiments, the electricity generating window also includes a spacer configured to separate the first glass pane and the second glass pane by a cavity. In some embodiments, the electricity generating window also includes one or more functional layers, such as an electrochromic layer or a low-E layer for reflecting infrared light.
    Type: Application
    Filed: January 10, 2018
    Publication date: January 31, 2019
    Applicant: Ubiquitous Energy, Inc.
    Inventors: Miles Barr, Ian Millard, Rachel Molaro, Richa Pandey, Veeral Hardev, Damon Hess
  • Publication number: 20190027705
    Abstract: The present teachings provide methods for forming organic layers for an organic light-emitting device (OLED) using an inkjet printing or thermal printing process. The method can further use one or more additional processes, such as vacuum thermal evaporation (VTE), to create an OLED stack. OLED stack structures are also provided wherein at least one of the charge injection or charge transport layers is formed by an inkjet printing or thermal printing method at a high deposition rate. The structure of the organic layer can be amorphous, crystalline, porous, dense, smooth, rough, or a combination thereof, depending on deposition parameters and post-treatment conditions. An OLED microcavity is also provided and can be formed by one of more of the methods.
    Type: Application
    Filed: September 27, 2018
    Publication date: January 24, 2019
    Applicant: Kateeva, Inc.
    Inventors: Jianglong Chen, Ian Millard, Steven Van Slyke, Inna Tregub, Conor F. Madigan
  • Publication number: 20180138344
    Abstract: A photovoltaic module includes a first transparent electrode layer characterized by a first sheet resistance, a second transparent electrode layer, and a photovoltaic material layer. The photovoltaic material layer is located between the first transparent electrode layer and the second transparent electrode layer. The photovoltaic module also includes a first busbar having a second sheet resistance lower than the first sheet resistance. The first transparent electrode layer, the second transparent electrode layer, and the photovoltaic material layer have an aligned region that forms a central transparent area of the photovoltaic module. The central transparent area including a plurality of sides. The first busbar is in contact with the first transparent electrode layer adjacent to at least a portion of each of the plurality of sides of the central transparent area.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 17, 2018
    Applicant: Ubiquitous Energy, Inc.
    Inventors: Miles Barr, Ian Millard, Rachel Molaro, Richa Pandey
  • Publication number: 20140332798
    Abstract: The present teachings provide methods for forming organic layers for an organic light-emitting device (OLED) using an inkjet printing or thermal printing process. The method can further use one or more additional processes, such as vacuum thermal evaporation (VTE), to create an OLED stack. OLED stack structures are also provided wherein at least one of the charge injection or charge transport layers is formed by an inkjet printing or thermal printing method at a high deposition rate. The structure of the organic layer can be amorphous, crystalline, porous, dense, smooth, rough, or a combination thereof, depending on deposition parameters and post-treatment conditions. An OLED microcavity is also provided and can be formed by one of more of the methods.
    Type: Application
    Filed: July 29, 2014
    Publication date: November 13, 2014
    Inventors: Jianglong Chen, Ian Millard, Steven Van Slyke, Inna Tregub, Conor F. Madigan
  • Patent number: 8809079
    Abstract: The present teachings provide methods for forming organic layers for an organic light-emitting device (OLED) using an inkjet printing or thermal printing process. The method can further use one or more additional processes, such as vacuum thermal evaporation (VTE), to create an OLED stack. OLED stack structures are also provided wherein at least one of the charge injection or charge transport layers is formed by an inkjet printing or thermal printing method at a high deposition rate. The structure of the organic layer can be amorphous, crystalline, porous, dense, smooth, rough, or a combination thereof, depending on deposition parameters and post-treatment conditions. An OLED microcavity is also provided and can be formed by one of more of the methods.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: August 19, 2014
    Assignee: Kateeva, Inc.
    Inventors: Jianglong Chen, Ian Millard, Steven Van Slyke, Inna Tregub, Conor Madigan
  • Publication number: 20130252351
    Abstract: Film-forming formulations are provided that satisfy a plurality of criteria for inkjet printing, thermal printing, or both. Criteria for film-forming formulations are also provided for selecting vehicles, combinations of vehicles, and film-forming materials, based upon viscosity, surface tension, solubility, and properties of printed films formed by such formulations. Film-forming formulations useful in the fabrication of organic light emitting devices (OLEDs) are provided including formulations useful for the fabrication of OLED hole transport layers, hole injection layers, electron transport layers, electron injection layers, and emissive layers, of an OLED. Methods of evaluating formulations for suitability in inkjet printing, thermal printing, or both, are also provided.
    Type: Application
    Filed: September 14, 2012
    Publication date: September 26, 2013
    Applicant: KATEEVA, INC
    Inventors: Inna TREGUB, Tane BOGHOZIAN, Jesse DANIELZADEH, Ranjana SHAH, Valerie GASSEND, Ian MILLARD, Jianglong CHEN
  • Publication number: 20130153866
    Abstract: The present teachings provide methods for forming organic layers for an organic light-emitting device (OLED) using an inkjet printing or thermal printing process. The method can further use one or more additional processes, such as vacuum thermal evaporation (VTE), to create an OLED stack. OLED stack structures are also provided wherein at least one of the charge injection or charge transport layers is formed by an inkjet printing or thermal printing method at a high deposition rate. The structure of the organic layer can be amorphous, crystalline, porous, dense, smooth, rough, or a combination thereof, depending on deposition parameters and post-treatment conditions. An OLED microcavity is also provided and can be formed by one of more of the methods.
    Type: Application
    Filed: June 21, 2012
    Publication date: June 20, 2013
    Applicant: KATEEVA, INC.
    Inventors: Jianglong CHEN, Ian MILLARD, Steven VAN SLYKE, Inna TREGUB, Conor MADIGAN
  • Patent number: 8466484
    Abstract: The present teachings provide methods for forming organic layers for an organic light-emitting device (OLED) using a thermal printing process. The method can further use one or more additional processes, such as vacuum thermal evaporation (VTE), to create an OLED stack. OLED stack structures are also provided wherein at least one of the charge injection or charge transport layers is formed by a thermal printing method at a high deposition rate. The organic layer can be subject to post-deposition treatment such as baking. The structure of the organic layer can be amorphous, crystalline, porous, dense, smooth, rough, or a combination thereof, depending on deposition parameters and post-treatment conditions. The organic layer can improve light out-coupling efficiency of an OLED, increase conductivity, decrease index of refraction, and/or modify the emission chromaticity of an OLED. An OLED microcavity is also provided and can be formed by one of more of these methods.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: June 18, 2013
    Assignee: Kateeva, Inc.
    Inventors: Steven Van Slyke, Conor Madigan, Jianglong Chen, Ian Millard
  • Publication number: 20130004656
    Abstract: Systems, apparatuses, and methods are provided that include or use a chuck, an inkjet printhead, and a gas knife to form film layers on a substrate, which have uniform feature dimensions and which avoid pile-up of inkjet ink. In some systems, a gas movement device is used instead of a gas knife. The systems, apparatus, and methods can be used to print layers on a substrate, which are used in an organic light-emitting device.
    Type: Application
    Filed: July 1, 2012
    Publication date: January 3, 2013
    Applicant: KATEEVA, INC.
    Inventors: Jianglong CHEN, Elias MARTINEZ, Alexander Sou-Kang KO, Ian MILLARD, Eliyahu VRONSKY, Conor F. MADIGAN
  • Publication number: 20120326192
    Abstract: The present teachings provide methods for forming organic layers for an organic light-emitting device (OLED) using a thermal printing process. The method can further use one or more additional processes, such as vacuum thermal evaporation (VTE), to create an OLED stack. OLED stack structures are also provided wherein at least one of the charge injection or charge transport layers is formed by a thermal printing method at a high deposition rate. The organic layer can be subject to post-deposition treatment such as baking. The structure of the organic layer can be amorphous, crystalline, porous, dense, smooth, rough, or a combination thereof, depending on deposition parameters and post-treatment conditions. The organic layer can improve light out-coupling efficiency of an OLED, increase conductivity, decrease index of refraction, and/or modify the emission chromaticity of an OLED. An OLED microcavity is also provided and can be formed by one of more of these methods.
    Type: Application
    Filed: January 27, 2012
    Publication date: December 27, 2012
    Applicant: KATEEVA, INC.
    Inventors: Steven VAN SLYKE, Conor MADIGAN, Jianglong CHEN, Ian MILLARD