Patents by Inventor Ian Nguyen
Ian Nguyen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11119318Abstract: A near-eye display device includes an image source, a waveguide, and a controller. The waveguide is configured to propagate light received the image source to a user of the near-eye display device, and includes a holographic grating comprising a plurality of angularly multiplexed holograms. The controller is configured to control display of an image via the image source.Type: GrantFiled: October 17, 2018Date of Patent: September 14, 2021Assignee: Microsoft Technology Licensing, LLCInventors: Sheng Yuan, Ian Nguyen, Steve Robbins, David D. Bohn
-
Publication number: 20190049727Abstract: Embodiments related near-eye display devices having angularly multiplexed holograms are disclosed. One disclosed embodiment provides a near-eye display device including an image source, a waveguide, and a controller. The waveguide is configured to propagate light received the image source to a user of the near-eye display device, and includes a holographic grating comprising a plurality of angularly multiplexed holograms. The controller is configured to control display of an image via the image source.Type: ApplicationFiled: October 17, 2018Publication date: February 14, 2019Applicant: Microsoft Technology Licensing, LLCInventors: Sheng Yuan, Ian Nguyen, Steve Robbins, David D. Bohn
-
Patent number: 10146053Abstract: Near-eye display devices having angularly multiplexed holograms are disclosed. One example includes an image source, a waveguide, and a controller. The waveguide is configured to propagate light received the image source to a user of the near-eye display device, and includes a holographic grating including a plurality of angularly multiplexed holograms. The controller is configured to control display of an image via the image source.Type: GrantFiled: December 19, 2012Date of Patent: December 4, 2018Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Sheng Yuan, Ian Nguyen, Steve Robbins, David D. Bohn
-
Patent number: 9766464Abstract: In a near-eye or heads-up display system including a display engine and an optical waveguide, a quarter-wave retarder (QWR) is positioned between a polarizing beam splitter (PBS) of the display engine and an input diffraction grating of the waveguide. Additionally, a linear polarizer can be positioned between the PBS and the QWR. Light corresponding to an image generated by a reflective microdisplay of the display engine is diffracted into the waveguide by the input diffraction grating, so it can travel by way of total internal reflection to an output coupler and viewed by a human eye. The QWR alone, or in combination with the linear polarizer, prevents a ghost image that may otherwise occur if a portion of the light corresponding to the image, that is diffracted into the waveguide by the input diffraction grating, is diffractively out-coupled by the input diffraction grating and thereafter reflects off the reflective microdisplay.Type: GrantFiled: December 17, 2015Date of Patent: September 19, 2017Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Yarn Chee Poon, Ian Nguyen, Eliezer Glik, Tapani Levola
-
Publication number: 20170176745Abstract: In a near-eye or heads-up display system including a display engine and an optical waveguide, a quarter-wave retarder (QWR) is positioned between a polarizing beam splitter (PBS) of the display engine and an input diffraction grating of the waveguide. Additionally, a linear polarizer can be positioned between the PBS and the QWR. Light corresponding to an image generated by a reflective microdisplay of the display engine is diffracted into the waveguide by the input diffraction grating, so it can travel by way of total internal reflection to an output coupler and viewed by a human eye. The QWR alone, or in combination with the linear polarizer, prevents a ghost image that may otherwise occur if a portion of the light corresponding to the image, that is diffracted into the waveguide by the input diffraction grating, is diffractively out-coupled by the input diffraction grating and thereafter reflects off the reflective microdisplay.Type: ApplicationFiled: December 17, 2015Publication date: June 22, 2017Inventors: Yarn Chee Poon, Ian Nguyen, Eliezer Glik, Tapani Levola
-
Patent number: 9494799Abstract: A transparent waveguide, for use in tracking an eye illuminated by infrared light, includes an input-coupler and an output-coupler. The input-coupler includes a stack of electronically switchable diffractive gratings arranged parallel to one another, each of which has a respective lens power that causes each of the gratings in the stack to have a different focal length. Each grating, when turned on, couples received infrared light into the waveguide. A sensor images an eye in dependence on infrared light beams that exit the waveguide at the output-coupler. Images of an eye, obtained using the sensor, are analyzed to determine which one of the electronically switchable diffractive gratings, when turned on, provides a best focused image of the eye or portion thereof. The one of the electronically switchable diffractive gratings, which provides the best focused image of the eye, is used for imaging the eye during eye tracking.Type: GrantFiled: September 24, 2014Date of Patent: November 15, 2016Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Steven Robbins, Ian A. Nguyen
-
Patent number: 9377623Abstract: A transparent waveguide, which is for use in tracking an eye that is illuminated by infrared light having an infrared wavelength, includes a volume Bragg grating type of input-coupler adapted to receive infrared light having the infrared wavelength and couple the received infrared light into the waveguide. The volume Bragg grating includes a lower boundary and an upper boundary that is closer to the output-coupler than the lower boundary. A k-vector angle of the volume Bragg grating at the lower boundary is greater than a k-vector angle at the upper boundary, with k-vector angles of the volume Bragg grating between the lower and upper boundaries gradually decreasing as distances decrease between grating planes of the volume Bragg grating and the upper boundary. Additionally, the volume Bragg grating preferably has an angular bandwidth that is no greater than 5 degrees.Type: GrantFiled: August 11, 2014Date of Patent: June 28, 2016Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Steven Robbins, Ian A. Nguyen, Xinye Lou
-
Publication number: 20160085300Abstract: A transparent waveguide, for use in tracking an eye illuminated by infrared light, includes an input-coupler and an output-coupler. The input-coupler includes a stack of electronically switchable diffractive gratings arranged parallel to one another, each of which has a respective lens power that causes each of the gratings in the stack to have a different focal length. Each grating, when turned on, couples received infrared light into the waveguide. A sensor images an eye in dependence on infrared light beams that exit the waveguide at the output-coupler. Images of an eye, obtained using the sensor, are analyzed to determine which one of the electronically switchable diffractive gratings, when turned on, provides a best focused image of the eye or portion thereof. The one of the electronically switchable diffractive gratings, which provides the best focused image of the eye, is used for imaging the eye during eye tracking.Type: ApplicationFiled: September 24, 2014Publication date: March 24, 2016Inventors: Steven Robbins, Ian A. Nguyen
-
Publication number: 20160077338Abstract: The technology provides a waveguide display having a compact projection light engine and a diffractive waveguide. The diffractive waveguide includes input diffraction gratings with rolled k-vectors. The projection light engine provides collimating light to a projected exit pupil external to the diffractive waveguide. The projection light engine components may include a light (or illuminating) source, microdisplay, lenticular screen, doublet, polarizing beam splitter (PBS), clean-up polarizer, fold mirror, curved reflector and quarter waveplate. A method of manufacturing a diffractive waveguide includes providing input gratings with rolled k-vectors. Rays of light are diffracted by, and passed through, a master hologram to form input diffraction gratings of a copy substrate. A second copy substrate may likewise be formed with a different master hologram.Type: ApplicationFiled: September 16, 2014Publication date: March 17, 2016Inventors: Steven John Robbins, Ian Nguyen
-
Publication number: 20160041384Abstract: A transparent waveguide, which is for use in tracking an eye that is illuminated by infrared light having an infrared wavelength, includes a volume Bragg grating type of input-coupler adapted to receive infrared light having the infrared wavelength and couple the received infrared light into the waveguide. The volume Bragg grating includes a lower boundary and an upper boundary that is closer to the output-coupler than the lower boundary. A k-vector angle of the volume Bragg grating at the lower boundary is greater than a k-vector angle at the upper boundary, with k-vector angles of the volume Bragg grating between the lower and upper boundaries gradually decreasing as distances decrease between grating planes of the volume Bragg grating and the upper boundary. Additionally, the volume Bragg grating preferably has an angular bandwidth that is no greater than 5 degrees.Type: ApplicationFiled: August 11, 2014Publication date: February 11, 2016Inventors: Steven Robbins, Ian A. Nguyen, Xinye Lou
-
Patent number: 9164290Abstract: Grating configurations are described for creating time sequenced field of view (FOV) tiles for a waveguide display. Pairings of non-output diffraction gratings and output diffraction gratings are activated to create a number of FOV tiles in a time sequence, for example in a frame update period for the image. Examples of a non-output grating are an input grating and a fold grating. For a set of at least three gratings used to make the pairings, each non-output grating is paired with each output grating. The number of pairings, and so the number of FOV tiles, is equal to a product of the total number of non-output gratings and the total number of output gratings. At least one diffraction grating in the pairing is an active pairing. Also described is a multiplexed diffraction grating including multiplexed K-vectors which increases the overall angular bandwidth for both incidence and diffraction.Type: GrantFiled: November 6, 2013Date of Patent: October 20, 2015Assignee: MICROSOFT CORPORATIONInventors: Steve J. Robbins, Ian A. Nguyen
-
Publication number: 20150125109Abstract: Grating configurations are described for creating time sequenced field of view (FOV) tiles for a waveguide display. Pairings of non-output diffraction gratings and output diffraction gratings are activated to create a number of FOV tiles in a time sequence, for example in a frame update period for the image. Examples of a non-output grating are an input grating and a fold grating. For a set of at least three gratings used to make the pairings, each non-output grating is paired with each output grating. The number of pairings, and so the number of FOV tiles, is equal to a product of the total number of non-output gratings and the total number of output gratings. At least one diffraction grating in the pairing is an active pairing. Also described is a multiplexed diffraction grating including multiplexed K-vectors which increases the overall angular bandwidth for both incidence and diffraction.Type: ApplicationFiled: November 6, 2013Publication date: May 7, 2015Inventors: Steve J. Robbins, Ian A. Nguyen
-
Patent number: 8885997Abstract: A system and method are disclosed for providing uniform color distribution of light emitted from a light source to an eye box in a near eye display (NED). An example of the system and method uses an optical element including two or more waveguides optimized to different colors of the visible light spectrum. The optical element further includes one or more polarization state generators for controlling the polarization of light incident on the waveguides to facilitate coupling of light into a matched waveguide, and to impede coupling of light into unmatched waveguides.Type: GrantFiled: August 31, 2012Date of Patent: November 11, 2014Assignee: Microsoft CorporationInventors: Ian A. Nguyen, Tapani Levola, David D. Bohn
-
Publication number: 20140240842Abstract: Various embodiments are disclosed herein that relate to coupling light into waveguides in a near-eye display device in a manner configured to be tolerant to misalignment of the waveguides with each other and/or other optics. For example, one disclosed embodiment provides a near-eye display device comprising one or more waveguides, wherein each waveguide comprises a light input coupling configured to receive light at a first side of the waveguide to couple the light into the waveguide, and a light output coupling configured to emit light from the waveguide at a second side of the waveguide, the second side of the waveguide being opposite the first side of the waveguide.Type: ApplicationFiled: February 22, 2013Publication date: August 28, 2014Inventors: Ian Nguyen, Steve Robbins
-
Publication number: 20140168735Abstract: Embodiments related near-eye display devices having angularly multiplexed holograms are disclosed. One disclosed embodiment provides a near-eye display device including an image source, a waveguide, and a controller. The waveguide is configured to propagate light received the image source to a user of the near-eye display device, and includes a holographic grating comprising a plurality of angularly multiplexed holograms. The controller is configured to control display of an image via the image source.Type: ApplicationFiled: December 19, 2012Publication date: June 19, 2014Inventors: Sheng Yuan, Ian Nguyen, Steve Robbins, David D. Bohn
-
Publication number: 20140168260Abstract: A system is disclosed for maintaining the spacing between waveguides in an optical element of a near eye display. Spacing is maintained with spacer elements mounted between adjacent waveguides in the optical element.Type: ApplicationFiled: December 13, 2012Publication date: June 19, 2014Inventors: Paul M. O'Brien, Ian A. Nguyen
-
Publication number: 20140064655Abstract: A system and method are disclosed for providing uniform color distribution of light emitted from a light source to an eye box in a near eye display (NED). An example of the system and method uses an optical element including two or more waveguides optimized to different colors of the visible light spectrum. The optical element further includes one or more polarization state generators for controlling the polarization of light incident on the waveguides to facilitate coupling of light into a matched waveguide, and to impede coupling of light into unmatched waveguides.Type: ApplicationFiled: August 31, 2012Publication date: March 6, 2014Inventors: Ian A. Nguyen, Tapani Levola, David D. Bohn
-
Patent number: 6628395Abstract: A device and method for performing a preliminary test on a neat serum sample contained in a primary collection tube is provided herein. The method includes the steps of positioning of an optical probe near the primary collection tube and monitoring the neat serum sample in the primary collection tube to determine whether an interferant, such as hemolysis, icteris and lipemia are present in the serum sample. From this test, a hemolytic index, an icteric index and a lipemic index can also be established for the neat serum sample. Based upon these serum indices, the neat serum sample can be transferred to a clinical analyzer for additional testing or to waste receptacle because the sample is compromised. Additionally, a volume test can be performed on the serum sample in the primary collection tube so that the serum sample can be properly allocated during subsequent testing.Type: GrantFiled: March 6, 2002Date of Patent: September 30, 2003Assignee: Beckman Coulter, Inc.Inventors: Yangang Liu, Tung Rung Wang, Ian Nguyen, Shirley Pfeifer, Jack McNeal
-
Publication number: 20020089669Abstract: A device and method for performing a preliminary test on a neat serum sample contained in a primary collection tube is provided herein. The method includes the steps of positioning of an optical probe near the primary collection tube and monitoring the neat serum sample in the primary collection tube to determine whether an interferant, such as hemolysis, icteris and lipemia are present in the serum sample. From this test, a hemolytic index an icteric index and a lipemic index can also be established for the neat serum sample. Based upon these serum indices, the neat serum sample can be transferred to a clinical analyzer for additional testing or to waste receptacle because the sample is compromised. Additionally, a volume test can be performed on the serum sample in the primary collection tube so that the serum sample can be properly allocated during subsequent testing.Type: ApplicationFiled: March 6, 2002Publication date: July 11, 2002Applicant: Beckman Coulter, Inc.Inventors: Yangang Liu, Tung Rung Wang, Ian Nguyen, Shirley Pfeifer, Jack McNeal
-
Patent number: 6388750Abstract: A device and method for performing a preliminary test on a neat serum sample contained in a primary collection tube is provided herein. The method includes the steps of positioning of an optical probe near the primary collection tube and monitoring the neat serum sample in the primary collection tube to determine whether an interferant, such as hemolysis, icteris and lipemia are present in the serum sample. From this test, a hemolytic index, an icteric index and a lipemic index can also be established for the neat serum sample. Based upon these serum indices, the neat serum sample can be transferred to a clinical analyzer for additional testing or to waste receptacle because the sample is compromised. Additionally, a volume test can be performed on the serum sample in the primary collection tube so that the serum sample can be properly allocated during subsequent testing.Type: GrantFiled: December 17, 1998Date of Patent: May 14, 2002Assignee: Beckman Coulter, Inc.Inventors: Yangang Liu, Tung Rung Wang, Ian Nguyen, Shirley Pfeifer, Jack McNeal