Patents by Inventor Ian Pinwill

Ian Pinwill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9129747
    Abstract: A wet electrolytic capacitor that includes a porous anode body containing a dielectric layer, an electrolyte, and a cathode containing a metal substrate on which is disposed a conductive coating is provided. Prior to application of the conductive coating, the metal substrate is blasted with abrasive particles to enhance the ability of the substrate to adhere to the coating. The micro-roughened metal substrate can be treated after blasting so that substantially all of the abrasive particles are removed. This is accomplished by contacting the metal substrate with an extraction solution to remove the particles, and also by selectively controlling the nature of the abrasive particles so that they are dispersible (e.g., soluble) in the solution.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: September 8, 2015
    Assignee: AVX Corporation
    Inventors: Ian Pinwill, David Masheder
  • Patent number: 9053861
    Abstract: A wet electrolytic capacitor that contains an anodically oxidized porous anode body, a cathode containing a metal substrate coated with a conductive coating, and a working electrolyte that wets the dielectric on the anode. The conductive coating is formed through anodic electrochemical polymerization (“electro-polymerization”) of a precursor colloidal suspension on the surface of the substrate. The colloidal suspension includes a precursor monomer, ionic surfactant, and sulfonic acid, which when employed in combination can synergistically improve the degree of surface coverage and overall conductivity of the coating.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: June 9, 2015
    Assignee: AVX Corporation
    Inventors: Mitchell D. Weaver, Dirk H. Dreissig, Jan Petrzilek, Martin Biler, David Masheder, Ian Pinwill
  • Patent number: 8747489
    Abstract: A solid electrolytic capacitor that contains an anode body formed from an electrically conductive powder and a dielectric coating located over and/or within the anode body is provided. The powder may have a high specific charge and in turn a relative dense packing configuration. Despite being formed from such a powder, a manganese precursor solution can be readily impregnated into the pores of the anode. This is accomplished, in part, through the use of a dispersant in the precursor solution that helps minimize the likelihood that the manganese oxide precursor will form droplets upon contacting the surface of the dielectric. Instead, the precursor solution can be better dispersed so that the resulting manganese oxide has a “film-like” configuration and coats at least a portion of the anode in a substantially uniform manner.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: June 10, 2014
    Assignee: AVX Corporation
    Inventors: Ian Pinwill, David Masheder, Silvie Vilcova, Petr Stojan, Jiri Hurt, Ivan Horacek
  • Patent number: 8619410
    Abstract: A solid electrolytic capacitor that contains an anode body formed from an electrically conductive powder and a dielectric coating located over and/or within the anode body is provided. The present inventors have discovered a technique that is believed to substantially improve the uniformity and consistency of the manganese oxide layer. This is accomplished, in part, through the use of a dispersant in the precursor solution that helps minimize the likelihood that the manganese oxide precursor will form droplets upon contacting the surface of the dielectric. Instead, the precursor solution can be better dispersed so that the resulting manganese oxide has a “film-like” configuration and coats at least a portion of the anode in a substantially uniform manner. This improves the quality of the resulting oxide as well as its surface coverage, and thereby enhances the electrical performance of the capacitor.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: December 31, 2013
    Assignee: AVX Corporation
    Inventors: Ian Pinwill, David Masheder, Silvie Vilcova, Petr Stojan, Jiri Hurt, Ivan Horacek
  • Publication number: 20130335886
    Abstract: A solid electrolytic capacitor that contains an anode body formed from an electrically conductive powder and a dielectric coating located over and/or within the anode body is provided. The powder may have a high specific charge and in turn a relative dense packing configuration. Despite being formed from such a powder, a manganese precursor solution can be readily impregnated into the pores of the anode. This is accomplished, in part, through the use of a dispersant in the precursor solution that helps minimize the likelihood that the manganese oxide precursor will form droplets upon contacting the surface of the dielectric. Instead, the precursor solution can be better dispersed so that the resulting manganese oxide has a “film-like” configuration and coats at least a portion of the anode in a substantially uniform manner.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 19, 2013
    Applicant: AVX Corporation
    Inventors: Ian Pinwill, David Masheder, Silvie Vilcova, Petr Stojan, Jiri Hurt, Ivan Horacek
  • Publication number: 20130242468
    Abstract: A wet electrolytic capacitor that includes a porous anode body containing a dielectric layer, an electrolyte, and a cathode containing a metal substrate on which is disposed a conductive coating is provided. Prior to application of the conductive coating, the metal substrate is blasted with abrasive particles to enhance the ability of the substrate to adhere to the coating. The micro-roughened metal substrate can be treated after blasting so that substantially all of the abrasive particles are removed. This is accomplished by contacting the metal substrate with an extraction solution to remove the particles, and also by selectively controlling the nature of the abrasive particles so that they are dispersible (e.g., soluble) in the solution.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 19, 2013
    Applicant: AVX CORPORATION
    Inventors: Ian Pinwill, David Masheder
  • Publication number: 20130242465
    Abstract: A wet electrolytic capacitor that contains an anodically oxidized porous anode body, a cathode containing a metal substrate coated with a conductive coating, and a working electrolyte that wets the dielectric on the anode. The conductive coating is formed through anodic electrochemical polymerization (“electro-polymerization”) of a precursor colloidal suspension on the surface of the substrate. The colloidal suspension includes a precursor monomer, ionic surfactant, and sulfonic acid, which when employed in combination can synergistically improve the degree of surface coverage and overall conductivity of the coating.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 19, 2013
    Applicant: AVX Corporation
    Inventors: Mitchell D. Weaver, Dirk H. Dreissig, Jan Petrzilek, Martin Biler, David Masheder, Ian Pinwill
  • Patent number: 8512422
    Abstract: A solid electrolytic capacitor that contains an anode body formed from an electrically conductive powder and a dielectric coating located over and/or within the anode body is provided. The powder has a high specific charge and in turn a relative dense packing configuration. Despite being formed from such a powder, the present inventors have discovered that a manganese precursor solution (e.g., manganese nitrate) can be readily impregnated into the pores of the anode. This is accomplished, in part, through the use of a dispersant in the precursor solution that helps minimize the likelihood that the manganese oxide precursor will form droplets upon contacting the surface of the dielectric. Instead, the precursor solution can be better dispersed so that the resulting manganese oxide has a “film-like” configuration and coats at least a portion of the anode in a substantially uniform manner.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: August 20, 2013
    Assignee: AVX Corporation
    Inventors: Ian Pinwill, David Masheder, Silvie Vilcova, Petr Stojan, Jiri Hurt, Ivan Horacek
  • Publication number: 20110317335
    Abstract: A solid electrolytic capacitor that contains an anode body formed from an electrically conductive powder and a dielectric coating located over and/or within the anode body is provided. The powder has a high specific charge and in turn a relative dense packing configuration. Despite being formed from such a powder, the present inventors have discovered that a manganese precursor solution (e.g., manganese nitrate) can be readily impregnated into the pores of the anode. This is accomplished, in part, through the use of a dispersant in the precursor solution that helps minimize the likelihood that the manganese oxide precursor will form droplets upon contacting the surface of the dielectric. Instead, the precursor solution can be better dispersed so that the resulting manganese oxide has a “film-like” configuration and coats at least a portion of the anode in a substantially uniform manner.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 29, 2011
    Applicant: AVX CORPORATION
    Inventors: Ian Pinwill, David Masheder, Silvie Vilcova, Petr Stojan, Jiri Hurt, Ivan Horacek
  • Publication number: 20110317334
    Abstract: A solid electrolytic capacitor that contains an anode body formed from an electrically conductive powder and a dielectric coating located over and/or within the anode body is provided. The present inventors have discovered a technique that is believed to substantially improve the uniformity and consistency of the manganese oxide layer. This is accomplished, in part, through the use of a dispersant in the precursor solution that helps minimize the likelihood that the manganese oxide precursor will form droplets upon contacting the surface of the dielectric. Instead, the precursor solution can be better dispersed so that the resulting manganese oxide has a “film-like” configuration and coats at least a portion of the anode in a substantially uniform manner. This improves the quality of the resulting oxide as well as its surface coverage, and thereby enhances the electrical performance of the capacitor.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 29, 2011
    Applicant: AVX CORPORATION
    Inventors: Ian Pinwill, David Masheder, Silvie Vilcova, Petr Stojan, Jiri Hurt, Ivan Horacek
  • Publication number: 20100085685
    Abstract: A pressed anode formed from an electrically conductive powder that contains a plurality of coarse agglomerates and fine agglomerates is provided. The fine agglomerates have an average size smaller than that of the coarse agglomerates so that the resulting powder contains two or more distinct particle sizes, i.e., a “bimodal” distribution. In this manner, the fine agglomerates can effectively occupy the pores defined between adjacent coarse agglomerates (“inter-agglomerate pores”). Through the occupation of the empty pores, the fine agglomerates can increase the apparent density of the resulting powder, which improves volumetric efficiency.
    Type: Application
    Filed: August 27, 2009
    Publication date: April 8, 2010
    Applicant: AVX CORPORATION
    Inventor: Ian Pinwill