Patents by Inventor Ian Radley

Ian Radley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11927704
    Abstract: A hybrid radiation detector is described comprising a first energy discriminating detector element selected to be sensitive to incident radiation of a lower energy range and a second detector element selected to be sensitive to incident radiation of a higher energy rage and a second detector element. In embodiments, a first detector element comprises a semiconductor detector; and a second detector element comprises a scintillator detector. The first detector element may thus be suitable to be more responsive to radiation in a first, lower energy range and/or configured and arranged to collect incident radiation emergent from a target of such energy that the photoelectric effect predominates as an attenuation mode in the target; and the second detector element may thus be suitable to be more responsive to radiation in a second, higher energy range and/or configured and arranged to collect incident radiation of a generally higher energy.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: March 12, 2024
    Assignee: KROMEK LIMITED
    Inventors: Ian Radley, Benjamin John Cantwell
  • Publication number: 20230161054
    Abstract: A method of detecting radiation from a source and a radiation detection system embodying the principles of the method are described. The method comprises: positioning a detector to receive radiation from the source; applying a multiplexing transformation to radiation from the source to create complexity in three dimensions in the pattern of radiation from the source; receiving a plurality of responses each being a response to an interaction with incident radiation occurring within the detector; determining, for each of the plurality of responses, a characteristic of the interaction, wherein the characteristic comprises at least a position in three dimensions of the interaction within the detector; processing the said plurality of responses in accordance with the determined position in three dimensions of each interaction within the detector and drawing inferences therefrom regarding the pattern of radiation from the source.
    Type: Application
    Filed: March 5, 2021
    Publication date: May 25, 2023
    Inventors: Alexander Cherlin, Ian Radley
  • Publication number: 20230053346
    Abstract: One embodiment provides a method for predicting the performance of a device based upon parameters of an underlying material, comprising: measuring a predetermined parameter of a material to be used in manufacturing the device; identifying, from a value generated from the measuring, a value of a property of the material; and determining a predicted performance of the device by correlating the value of the property to a performance value. Other aspects are described and claimed.
    Type: Application
    Filed: August 23, 2022
    Publication date: February 23, 2023
    Inventors: Ian Radley, Handong Li, Brian William Harris, Carl D. Brunetta
  • Publication number: 20220128713
    Abstract: A hybrid radiation detector is described comprising a first energy discriminating detector element selected to be sensitive to incident radiation of a lower energy range and a second detector element selected to be sensitive to incident radiation of a higher energy rage and a second detector element. In embodiments, a first detector element comprises a semiconductor detector; and a second detector element comprises a scintillator detector. The first detector element may thus be suitable to be more responsive to radiation in a first, lower energy range and/or configured and arranged to collect incident radiation emergent from a target of such energy that the photoelectric effect predominates as an attenuation mode in the target; and the second detector element may thus be suitable to be more responsive to radiation in a second, higher energy range and/or configured and arranged to collect incident radiation of a generally higher energy.
    Type: Application
    Filed: February 21, 2020
    Publication date: April 28, 2022
    Inventors: Ian Radley, Benjamin John Cantwell
  • Patent number: 10656010
    Abstract: One embodiment provides a method, including: receiving a plurality of responses to an interaction occurring within a photon detector pixel array, wherein the photon detector pixel array comprises a plurality of pixels; identifying a subset of the plurality of pixels associated with the interaction, wherein each of the subset of the plurality of pixels corresponds to at least one of the plurality of responses; determining, from the plurality of responses, a characteristic of the interaction, wherein the characteristic comprises at least one of: time, position, and energy of the interaction; recording the interaction associated with the at least one determined characteristic; collecting a plurality of recorded interactions and associated determined characteristics; selecting a subset of the plurality of recorded interactions, wherein the subset selection is based upon a restricted range of at least one determined characteristic; and forming an image from the selected subset of the plurality of recorded interact
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: May 19, 2020
    Assignee: KROMEK GROUP, PLC
    Inventors: Alexander Cherlin, Ian Radley, James William Hugg
  • Patent number: 10534096
    Abstract: One embodiment provides a method, including: receiving a dataset associated with a plurality of photon emission events interacting with a detector array of an imaging device; identifying a first subset of the dataset associated with a plurality of unscattered photon emission events from the plurality of photon emission events; identifying a second subset of the dataset associated with at least one scattered photon event from the plurality of photon emission events; determining, for a scattered photon event, a likely location of emission of the scattered photon event using data from the first subset of the dataset associated with the plurality of unscattered photon events; and correcting the dataset by associating the scattered photon event with the determined likely location of emission. Other aspects are described and claimed.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: January 14, 2020
    Assignee: KROMEK GROUP, PLC
    Inventors: James William Hugg, Ian Radley
  • Publication number: 20190391282
    Abstract: One embodiment provides a method, including: receiving a dataset associated with a plurality of photon emission events interacting with a detector array of an imaging device; identifying a first subset of the dataset associated with a plurality of unscattered photon emission events from the plurality of photon emission events; identifying a second subset of the dataset associated with at least one scattered photon event from the plurality of photon emission events; determining, for a scattered photon event, a likely location of emission of the scattered photon event using data from the first subset of the dataset associated with the plurality of unscattered photon events; and correcting the dataset by associating the scattered photon event with the determined likely location of emission. Other aspects are described and claimed.
    Type: Application
    Filed: June 22, 2018
    Publication date: December 26, 2019
    Inventors: James William Hugg, Ian Radley
  • Publication number: 20190285469
    Abstract: One embodiment provides a method, including: receiving a plurality of responses to an interaction occurring within a photon detector pixel array, wherein the photon detector pixel array comprises a plurality of pixels; identifying a subset of the plurality of pixels associated with the interaction, wherein each of the subset of the plurality of pixels corresponds to at least one of the plurality of responses; determining, from the plurality of responses, a characteristic of the interaction, wherein the characteristic comprises at least one of: time, position, and energy of the interaction; recording the interaction associated with the at least one determined characteristic; collecting a plurality of recorded interactions and associated determined characteristics; selecting a subset of the plurality of recorded interactions, wherein the subset selection is based upon a restricted range of at least one determined characteristic; and forming an image from the selected subset of the plurality of recorded interact
    Type: Application
    Filed: January 30, 2019
    Publication date: September 19, 2019
    Inventors: Alexander Cherlin, Ian Radley, James William Hugg
  • Patent number: 10371832
    Abstract: One embodiment provides a method for imaging photons, including: receiving a dataset associated with a plurality of photon events, the photon events corresponding to photons interacting with a photon imaging device, wherein the photon imaging device comprises a photon guide assembly and a detector array; the photon guide assembly comprising a plurality of photon guides positioned at an oblique angle with respect to the detector array; and producing an oblique planar projection image of the plurality of photon events by processing the dataset. Other aspects are described and claimed.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: August 6, 2019
    Assignee: KROMEK GROUP, PLC
    Inventors: James William Hugg, Ian Radley
  • Patent number: 10254163
    Abstract: One embodiment provides a method, including: receiving a plurality of responses to an interaction occurring within a photon detector pixel array, wherein the photon detector pixel array comprises a plurality of pixels; identifying a subset of the plurality of pixels associated with the interaction, wherein each of the subset of the plurality of pixels corresponds to at least one of the plurality of responses; and determining, from the plurality of responses, a characteristic of the interaction, wherein the characteristic comprises at least one of: time, position, and energy of the interaction. Other aspects are described and claimed.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: April 9, 2019
    Assignee: KROMEK GROUP, PLC
    Inventors: Alexander Cherlin, Ian Radley, James William Hugg
  • Patent number: 10175382
    Abstract: A method of radiological examination of an object for the identification and detection of the composition the object comprising the steps of: irradiating an object under test with high energy radiation such as x-rays or gamma-rays and collecting radiation emergent from the object at a suitable detector system in such manner that emergent radiation intensity data is collected for the entire volume of the object under test; numerically processing the radiation intensity data to obtain a first data item correlated to the total number of electrons within the sample; applying an alternative method to obtain a second data item correlated to another property of the sample; using the first and second data items to derive an indication of the material content of the sample.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: January 8, 2019
    Assignee: Kromek Limited
    Inventors: Ian Radley, Benjamin John Cantwell, Andrew Keith Powell
  • Patent number: 10156647
    Abstract: A method is for the deconvolution of a statistically noisy spectral dataset is described comprising the steps of: a. obtaining a spectroscopically resolved dataset of measured flux from a sample that has been collected using a suitable detector radiation system; b. generating an initial estimate of the true spectrum; c. modifying the estimate of the true spectrum by a response function of the detector used to collect the measured flux dataset so as to generate an estimate flux dataset; d. computing a merit value for statistical fit between the measured flux dataset and the estimate flux dataset; e. applying a perturbation to a value of the estimate of the true spectrum; f.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: December 18, 2018
    Assignee: Kromek Limited
    Inventors: Benjamin John Cantwell, Andrew Keith Powell, Ian Radley
  • Patent number: 9841390
    Abstract: A method of examination of an object comprising the steps of: applying a Nuclear Magnetic Resonance technique to obtain a data item correlated to the relative nuclear susceptibility within the sample; obtaining a further data item correlated to another measure of the object under examination; determining therefrom a ratio.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: December 12, 2017
    Assignee: Kromek Limited
    Inventors: Ian Radley, Benjamin John Cantwell, Andrew Keith Powell
  • Patent number: 9581619
    Abstract: A method of and device for processing a radiation pulse are described based on: detecting an event at the detector; producing a pulse; determining for the pulse: a pulse height measurement representative of pulse magnitude; a pulse width measurement representative of pulse duration; assigning the pulse to one of at least two classes based on the determined pulse height/pulse width; applying to each pulse an algorithm specific to its particular class to produce an output pulse height/pulse width profile.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: February 28, 2017
    Assignee: Kromek Limited
    Inventors: Paul Scott, Ian Radley
  • Patent number: 9459218
    Abstract: A method of identifying the material content of an object comprises: providing a radiation source and a radiation detector; irradiating a test object with radiation from the source; collecting at the detector system intensity data for radiation emergent from the test object; resolving the intensity data spectroscopically between a plural set of energy bands; numerically processing the spectroscopically resolved intensity data via the following steps: considering a material attenuation coefficient as a plural set of energy dependent polynomial equations in atomic number with a set of energy dependent coefficients across the said plural set of energy bands; determining a measured attenuation coefficient at each said energy band; calculating therefrom one or more orders of Compound Proton Number and/or effective mass thickness and/or density and for example a Compound Proton Number Set comprising plural order powers and preferably plural higher order powers of weighted compound atomic number.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: October 4, 2016
    Assignee: Kromek Limited
    Inventors: Ian Radley, Ben Cantwell, David Edward Joyce, Paul Scott
  • Patent number: 9448326
    Abstract: A method processing an image dataset of radiation emergent from a test object after its irradiation by a suitable radiation source is described which comprises the steps of: generating an image dataset comprising a spatially resolved map of items of intensity data from the radiation emergent from the test object; further, resolving the intensity data items spectroscopically between at least two energy bands across the spectrum of the source; numerically processing the spectroscopically resolved intensity data items to determine a further spatially resolved dataset of data items representative of one or more orders of Compound Proton Number and/or effective mass thickness and/or a density; generating a segmented image dataset using the said dataset of data items representative of one or more orders of Compound Proton Number and/or effective mass thickness and/or a density. The method applied as part of a method for the radiological examination of an object and an apparatus for the same are also described.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: September 20, 2016
    Assignee: Kromek Limited
    Inventors: Ian Radley, Ben Cantwell, David Edward Joyce, Paul Scott
  • Patent number: 9423363
    Abstract: A method for monitoring objects for example for facilitating the identification and/or authentication of objects comprises: in a first recording phase: irradiating an object with a suitable source of radiation, collecting intensity information about radiation emergent from the object, resolving the intensity information spectroscopically between at least two energy bands, and storing the resultant dataset as a reference dataset; and in a second verification phase: irradiating an object with a suitable source of radiation, collecting intensity information about radiation emergent from the object, resolving the intensity information spectroscopically between at least two energy bands, and using the resultant dataset as a test dataset; identifying the object and retrieving its corresponding reference dataset; comparing the test dataset and the reference dataset within predetermined tolerance limits, and: in the event that the reference dataset and the test dataset correspond within the predetermined tolerance li
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: August 23, 2016
    Assignee: Kromek Limited
    Inventors: Ian Radley, Ben Cantwell, David Edward Joyce, Paul Scott
  • Patent number: 9293628
    Abstract: A semiconductor detector device comprising: a detector element comprising at least one active detector layer of piezoelectric semiconductor material; a stress inducing element arranged to act in use on the detector element to generate therein a predetermined pattern of stress, and consequently a predetermined electrical field via the piezoelectric effect. A method of fabrication and of operation of a semiconductor detector device embodying these principles are also described.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: March 22, 2016
    Assignee: Kromek Limited
    Inventors: Mohamed Ayoub, Ian Radley
  • Publication number: 20160061969
    Abstract: A method is for the deconvolution of a statistically noisy spectral dataset is described comprising the steps of: a. obtaining a spectroscopically resolved dataset of measured flux from a sample that has been collected using a suitable detector radiation system; b. generating an initial estimate of the true spectrum; c. modifying the estimate of the true spectrum by a response function of the detector used to collect the measured flux dataset so as to generate an estimate flux dataset; d. computing a merit value for statistical fit between the measured flux dataset and the estimate flux dataset; e. applying a perturbation to a value of the estimate of the true spectrum; f.
    Type: Application
    Filed: November 22, 2013
    Publication date: March 3, 2016
    Inventors: Benjamin John CANTWELL, Andrew Keith POWELL, Ian RADLEY
  • Patent number: 9202838
    Abstract: A method of bonding a semiconductor structure to a substrate to effect both a mechanical bond and a selectively patterned conductive bond, comprising the steps of mechanically bonding a semiconductor structure to a substrate by means of a bonding layer; providing gaps in the bonding layer generally corresponding to a desired conductive bond pattern; providing vias though the substrate generally positioned at the gaps in the bonding layer; causing electrically conductive material to contact the semiconductor structure exposed through the vias. A device made in accordance with the method is also described.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: December 1, 2015
    Inventor: Ian Radley