Patents by Inventor Ian Robert Christen

Ian Robert Christen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240069368
    Abstract: Methods and systems are described for precisely adjusting characteristics of microfabricated devices after device fabrication. The adjustments can be carried out in parallel on a plurality of the microfabricated devices. By carrying out the adjustment process, uniformity of feature sizes to a few picometers (one standard deviation) and corresponding uniformity of operating characteristics for a plurality of microfabricated devices are possible.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Inventors: Christopher Louis Panuski, Ian Robert Christen, Dirk Robert ENGLUND
  • Publication number: 20230288637
    Abstract: An atom control architecture based on VIS-IR photonic integrated circuit (PIC) technology is characterized by (1) visible (VIS) and near-infrared (IR) wavelength operation, (2) channel counts extensible beyond 1000s of individually addressable atoms, (3) high intensity modulation extinction and (4) repeatability compatible with low gate errors, and (5) fast switching times. A 16-channel SiN-based APIC with (5.8±0.4) ns response times and <?30 dB extinction ratio at a wavelength of 780 nm. Based on a complementary metal-oxide-semiconductor (CMOS) fabrication process, this atom-control PIC (APIC) technology can be used for atomic, molecular, and optical physics and emerging applications, from quantum computers with cold atoms or ions to quantum networks with solid-state color centers. This APIC technology is especially suitable for scalable quantum information processing based on optically programmable atomic systems.
    Type: Application
    Filed: January 10, 2023
    Publication date: September 14, 2023
    Inventors: Artur Hermans, Adrian Johannes Menssen, Christopher Louis Panuski, Ian Robert Christen, Dirk Robert ENGLUND
  • Publication number: 20220197102
    Abstract: A system for optically modulating a plurality of optical channels includes a power delivery module adapted to convert a coherent light beam into a plurality of optical channels, at least one optical modulator, optically coupled to the power delivery module, the at least one optical modulator adapted to optically modulate each of the plurality of the optical channels, and a vacuum chamber having a trapping plane therein, the vacuum chamber adapted to generate an addressable array of trapped particles at the trapping plane, wherein each of the plurality of optical channels is optically coupled to at least one of the trapped particles of the addressable array.
    Type: Application
    Filed: May 15, 2020
    Publication date: June 23, 2022
    Inventors: Ian Robert Christen, Dirk R. Englund, Hannes Bernien, Ahmed Omran, Alexander Keesling Contreras, Harry Jay Levine, Mikhail Lukin
  • Publication number: 20210224678
    Abstract: A process is provided for the high-yield heterogeneous integration of ‘quantum micro-chiplets’ (QMCs, diamond waveguide arrays containing highly coherent color centers) with an aluminum nitride (AlN) photonic integrated circuit (PIC). As an example, the process is useful for the development of a 72-channel defect-free array of germanium-vacancy (GeV) and silicon-vacancy (SiV) color centers in a PIC. Photoluminescence spectroscopy reveals long-term stable and narrow average optical linewidths of 54 MHz (146 MHz) for GeV (SiV) emitters, close to the lifetime-limited linewidth of 32 MHz (93 MHz). Additionally, inhomogeneities in the individual qubits can be compensated in situ with integrated tuning of the optical frequencies over 100 GHz. The ability to assemble large numbers of nearly indistinguishable artificial atoms into phase-stable PICs is useful for development of multiplexed quantum repeaters and general-purpose quantum computers.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 22, 2021
    Inventors: Noel WAN, Jacques Johannes CAROLAN, Tsung-Ju Lu, Ian Robert Christen, Dirk Robert ENGLUND
  • Patent number: 11054590
    Abstract: A process is provided for the high-yield heterogeneous integration of ‘quantum micro-chiplets’ (QMCs, diamond waveguide arrays containing highly coherent color centers) with an aluminum nitride (AlN) photonic integrated circuit (PIC). As an example, the process is useful for the development of a 72-channel defect-free array of germanium-vacancy (GeV) and silicon-vacancy (SiV) color centers in a PIC. Photoluminescence spectroscopy reveals long-term stable and narrow average optical linewidths of 54 MHz (146 MHz) for GeV (SiV) emitters, close to the lifetime-limited linewidth of 32 MHz (93 MHz). Additionally, inhomogeneities in the individual qubits can be compensated in situ with integrated tuning of the optical frequencies over 100 GHz. The ability to assemble large numbers of nearly indistinguishable artificial atoms into phase-stable PICs is useful for development of multiplexed quantum repeaters and general-purpose quantum computers.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: July 6, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Noel Wan, Jacques Johannes Carolan, Tsung-Ju Lu, Ian Robert Christen, Dirk Robert Englund