Patents by Inventor Ian Salmon McKay

Ian Salmon McKay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11552290
    Abstract: Various embodiments provide a battery, a bulk energy storage system including the battery, and/or a method of operating the bulk energy storage system including the battery. In various embodiment, the battery may include a first electrode, an electrolyte, and a second electrode, wherein one or both of the first electrode and the second electrode comprises direct reduced iron (“DRI”). In various embodiments, the DRI may be in the form of pellets. In various embodiments, the pellets may comprise at least about 60 wt % iron by elemental mass, based on the total mass of the pellets. In various embodiments, one or both of the first electrode and the second electrode comprises from about 60% to about 90% iron and from about 1% to about 40% of a component comprising one or more of the materials selected from the group of SiO2, Al2O3, MgO, CaO, and TiO2.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: January 10, 2023
    Assignee: FORM ENERGY, INC.
    Inventors: Rupak Chakraborty, Jarrod David Milshtein, Eric Weber, William Henry Woodford, Yet-Ming Chiang, Ian Salmon McKay, Liang Su, Jay Whitacre, Theodore Alan Wiley, Kristen Carlisle, Mitchell Terrance Westwood, Rachel Elizabeth Mumma, Max Rae Chu, Amelie Nina Kharey, Benjamin Thomas Hultman, Marco Ferrara, Mateo Cristian Jaramillo, Isabella Caruso, Jocelyn Newhouse
  • Publication number: 20220352527
    Abstract: Systems and methods of the various embodiments may provide a refuelable battery for the power grid to provide a sustainable, cost-effective, and/or operationally efficient solution to energy source variability and/or energy demand variability. In particular, the systems and methods of the various embodiments may provide a refuelable primary battery solution that addresses bulk seasonal energy storage needs, variable demand needs, and other challenges.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventors: Mateo Cristian JARAMILLO, Ian Salmon MCKAY, William Henry WOODFORD
  • Publication number: 20220352528
    Abstract: Systems and methods of the various embodiments may provide a refuelable battery for the power grid to provide a sustainable, cost-effective, and/or operationally efficient solution to energy source variability and/or energy demand variability. In particular, the systems and methods of the various embodiments may provide a refuelable primary battery solution that addresses bulk seasonal energy storage needs, variable demand needs, and other challenges.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventors: Mateo Cristian JARAMILLO, Ian Salmon MCKAY, William Henry WOODFORD
  • Publication number: 20220344647
    Abstract: Various embodiments provide a battery, a bulk energy storage system including the battery, and/or a method of operating the bulk energy storage system including the battery. In various embodiment, the battery may include a first electrode, an electrolyte, and a second electrode, wherein one or both of the first electrode and the second electrode comprises direct reduced iron (“DRI”). In various embodiments, the DRI may be in the form of pellets. In various embodiments, the pellets may comprise at least about 60 wt % iron by elemental mass, based on the total mass of the pellets. In various embodiments, one or both of the first electrode and the second electrode comprises from about 60% to about 90% iron and from about 1% to about 40% of a component comprising one or more of the materials selected from the group of SiO2, Al2O3, MgO, CaO, and TiO2.
    Type: Application
    Filed: July 26, 2019
    Publication date: October 27, 2022
    Inventors: Rupak CHAKRABORTY, Jarrod David MILSHTEIN, Eric WEBER, William Henry WOODFORD, Yet-Ming CHIANG, Ian Salmon MCKAY, Liang SU, Jay WHITACRE, Theodore Alan WILEY, Kristen CARLISLE, Mitchell Terrance WESTWOOD, Rachel Elizabeth MUMMA, Max Rae CHU, Amelie Nina KHAREY, Benjamin Thomas HULTMAN, Marco FERRARA, Mateo Cristian JARAMILLO, Isabella CARUSO, Jocelyn NEWHOUSE
  • Publication number: 20220320607
    Abstract: Method and devices for charging and reconditioning an electrochemical cell by applying one of a current and a voltage for achieving a galvanic phase and an electrolytic phase in alternating periods.
    Type: Application
    Filed: March 29, 2022
    Publication date: October 6, 2022
    Inventors: Ian Salmon McKay, Lowell Lincoln Wood, JR.
  • Publication number: 20220311002
    Abstract: A thin-film all-organic electrochemical device is disclosed. The device includes one or more polymer chains. Each of the one or more polymer chains has reducing functional groups, oxidizing functional groups, and ionically conducting functional groups. The ionically conducting functional groups are disposed in between the reducing functional groups and the oxidizing functional groups. The device may produce a potential greater than 5 volts.
    Type: Application
    Filed: March 13, 2022
    Publication date: September 29, 2022
    Inventors: Ian Salmon McKay, Lowell Lincoln Wood, JR.
  • Patent number: 11447218
    Abstract: Underwater apparatuses and methods of operating underwater apparatuses. The apparatus includes a power source such as an aluminum-water cell. Waste product from the power source may be channeled into various portions of the apparatus to adjust the buoyancy of the apparatus, the center of buoyancy of the apparatus, and/or the trim of the apparatus.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: September 20, 2022
    Assignee: L3Harris Open Water Power, Inc.
    Inventors: David Harvie Porter, Thomas Bradford Milnes, Ian Salmon McKay, Jeffrey Michael Smith
  • Patent number: 11394035
    Abstract: Systems and methods of the various embodiments may provide a refuelable battery for the power grid to provide a sustainable, cost-effective, and/or operationally efficient solution to energy source variability and/or energy demand variability. In particular, the systems and methods of the various embodiments may provide a refuelable primary battery solution that addresses bulk seasonal energy storage needs, variable demand needs, and other challenges.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: July 19, 2022
    Assignee: FORM ENERGY, INC.
    Inventors: Mateo Cristian Jaramillo, Ian Salmon McKay, William Henry Woodford
  • Patent number: 11069883
    Abstract: Galvanic metal-water cells and methods of manufacturing positive electrodes to be used in said galvanic metal-water cells. The galvanic metal-water cells in accordance with various embodiments include a cathode that includes a layer comprising nickel-molybdenum deposited thereon. The nickel-molybdenum coated cathodes exhibit favorable hydrogen evolution reaction overpotential compared with existing devices. In these galvanic metal-water cells, the metal is oxidized and water is reduced.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: July 20, 2021
    Assignee: L3 Open Water Power, Inc.
    Inventors: David Harvie Porter, Ian Salmon McKay, Thomas Bradford Milnes, Branko Zugic
  • Publication number: 20210214062
    Abstract: Underwater apparatuses and methods of operating underwater apparatuses. The apparatus includes a power source such as an aluminum-water cell. Waste product from the power source may be channeled into various portions of the apparatus to adjust the buoyancy of the apparatus, the center of buoyancy of the apparatus, and/or the trim of the apparatus.
    Type: Application
    Filed: October 4, 2017
    Publication date: July 15, 2021
    Inventors: David Harvie Porter, Thomas Bradford Milnes, Ian Salmon McKay, Jeffrey Michael Smith
  • Publication number: 20210151775
    Abstract: Materials, designs, and methods of fabrication for hydrogen oxidation electrodes and electrochemical cells including the same are disclosed. In various embodiments, hydrogen oxidation catalysts and corresponding substrates are provided that enable electrochemical oxidation of hydrogen evolved at the anode of aqueous batteries.
    Type: Application
    Filed: November 18, 2020
    Publication date: May 20, 2021
    Inventors: Nicholas Reed PERKINS, Eric WEBER, Benjamin Thomas HULTMAN, Ian Salmon MCKAY, Jarrod David MILSHTEIN, Liang SU, Andrew LIOTTA, Jocelyn Marie NEWHOUSE, William Henry WOODFORD, Annelise Christine THOMPSON, Danielle Cassidy SMITH
  • Publication number: 20210028452
    Abstract: Materials, designs, and methods of fabrication for iron-manganese oxide electrochemical cells are disclosed. In various embodiments, the negative electrode is comprised of pelletized, briquetted, or pressed iron-bearing components, including metallic iron or iron-based compounds (oxides, hydroxides, sulfides, or combinations thereof), collectively called “iron negative electrode.” In various embodiments, the positive electrode is comprised of pelletized, briquetted, or pressed manganese-bearing components, including manganese (IV) oxide (MnO2), manganese (III) oxide (Mn2O3), manganese (III) oxyhydroxide (MnOOH), manganese (II) oxide (MnO), manganese (II) hydroxide (Mn(OH)2), or combinations thereof, collectively called “manganese oxide positive electrode.” In various embodiments, electrolyte is comprised of aqueous alkali metal hydroxide including lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), cesium hydroxide (CsOH), or combinations thereof.
    Type: Application
    Filed: July 25, 2020
    Publication date: January 28, 2021
    Inventors: Liang SU, Jarrod David MILSHTEIN, William Henry WOODFORD, Yet-Ming CHIANG, Jay WHITACRE, Lucas COHEN, Rupak CHAKRABORTY, Andrew Haynes LIOTTA, Ian Salmon MCKAY, Thomas CONRY, Michael Andrew GIBSON, Jocelyn Marie NEWHOUSE, Amelie Nina KHAREY, Annelise Christine THOMPSON, Weston SMITH, Joseph Anthony PANTANO, Isabella CARUSO, Benjamin Thomas HULTMAN, Max Rae CHU, Nicholas PERKINS, Florian WEHNER, Rebecca EISENACH, Mitchell Terrance WESTWOOD, Tristan GILBERT, Rachel Elizabeth MUMMA, Brandon UBER, Eric WEBER, Danielle Cassidy SMITH, Brooke WOJESKI
  • Publication number: 20200411932
    Abstract: Systems and methods of the various embodiments may provide device architectures for batteries. In various embodiments, these may be primary or secondary batteries. In various embodiments these devices may be useful for energy storage. Various embodiments may provide a battery including an Oxygen Reduction Reaction (ORR) electrode, an Oxygen Evolution Reaction (OER) electrode, a metal electrode; and an electrolyte separating the ORR electrode and the OER electrode from the metal electrode.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 31, 2020
    Inventors: Eric WEBER, Mitchell Terrance WESTWOOD, Rachel Elizabeth MUMMA, Alexander H. SLOCUM, Liang SU, Jarrod David MILSHTEIN, William Henry WOODFORD, Yet-Ming CHIANG, Mateo Cristian JARAMILLO, Ian Salmon MCKAY, Fikile BRUSHETT, Helen Van BENSCHOTEN, Tristan GILBERT, Nicholas Reed PERKINS, Joseph Anthony PANTANO, Weston SMITH, Kristen CARLISLE, Isabella CARUSO, Benjamin Thomas HULTMAN, Annelise Christine THOMPSON, Danielle SMITH, Vladimir TARASOV, Katherine HARTMAN, Andrew Haynes LIOTTA, Onur TALU, Marc-Antoni GOULET, Rupak CHAKRABORTY, Florian WEHNER, Bradley MILESON, Alexandra ROUSSEAU
  • Patent number: 10739089
    Abstract: Heat exchange structure. A hydrophilic, thermally conductive porous medium includes nanostructures formed substantially uniformly throughout the porous medium providing a balance of capillary and viscous forces to self-regulate a liquid-vapor contact line. A suitable porous medium is copper. A method for making the structure is also disclosed.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: August 11, 2020
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Ian Salmon McKay, Shankar Narayanan, Evelyn N. Wang
  • Publication number: 20200217587
    Abstract: Heat exchange structure. A hydrophilic, thermally conductive porous medium includes nanostructures formed substantially uniformly throughout the porous medium providing a balance of capillary and viscous forces to self-regulate a liquid-vapor contact line. A suitable porous medium is copper. A method for making the structure is also disclosed.
    Type: Application
    Filed: March 27, 2014
    Publication date: July 9, 2020
    Inventors: Ian Salmon McKay, Shankar Narayanan, Evelyn N. Wang
  • Patent number: 10680253
    Abstract: A method of generating an electrical current and a multi-cell electrochemical device. The method includes extracting oxygen from an aqueous ambient environment surrounding an electrochemical system; transporting the extracted oxygen through a selectively oxygen-permeable membrane to an enclosed electrolyte configured to surround an anode and a cathode in the electrochemical system, wherein the electrolyte is separated from the aqueous ambient environment; transporting the oxygenated electrolyte to the cathode; reducing the oxygen at the cathode; and oxidizing a metal at the anode. The device includes a metal anode; a cathode; an enclosed electrolyte configured to surround the cathode and the anode, wherein the electrolyte is separated from an aqueous ambient environment surrounding the electrochemical device; and a selectively oxygen-permeable membrane configured to extract oxygen from the aqueous ambient environment.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: June 9, 2020
    Assignee: L3 Open Water Power, Inc.
    Inventors: Ian Salmon McKay, Jason R Kovacs, Jesse Daniel Benck, Branko Zugic
  • Publication number: 20200136153
    Abstract: Systems and methods of the various embodiments may provide a refuelable battery for the power grid to provide a sustainable, cost-effective, and/or operationally efficient solution to energy source variability and/or energy demand variability. In particular, the systems and methods of the various embodiments may provide a refuelable primary battery solution that addresses bulk seasonal energy storage needs, variable demand needs, and other challenges.
    Type: Application
    Filed: April 5, 2018
    Publication date: April 30, 2020
    Inventors: Mateo Cristian JARAMILLO, Ian Salmon MCKAY, William Henry WOODFORD
  • Patent number: 10622690
    Abstract: Provided is a method for generating an electrical current. The method includes: introducing water between the anode and at least one cathode of an electrochemical cell, to form an electrolyte; anaerobically oxidizing aluminum or an aluminum alloy; and electrochemically reducing water at the at least one cathode. When the cell is in operation, the hydroxyaluminate (Al(OH)4?) in the electrolyte reaches a concentration maximum and thereafter a concentration minimum. The concentration maximum is above 125% of the saturation concentration and below 2000% of the saturation concentration. The concentration minimum is below 125% of the saturation concentration and above 50% of the saturation concentration.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: April 14, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian Salmon McKay, Ruaridh R. Macdonald, Thomas B. Milnes
  • Patent number: 10608307
    Abstract: Provided a method for generating an electrical current. The method includes: introducing water between the anode and at least one cathode of an electrochemical cell, to form an electrolyte; anaerobically oxidizing aluminum or an aluminum alloy; and electrochemically reducing water at the at least one cathode. The electrochemical cell includes: a plurality of electrode stacks, each electrode stack comprising an anode including the aluminum or aluminum alloy, and at least one cathode configured to be electrically coupled to the anode; one or more physical separators between each electrode stack adjacent to the cathode; a housing configured to hold the electrode stacks, the electrolyte, and the physical separators; and a water injection port. When the cell is in operation, the hydroxyaluminate concentration of the electrolyte in the cell is maintained between at least 20% to at most 750% of the saturation concentration.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: March 31, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian Salmon McKay, Ruaridh R. Macdonald, Thomas B. Milnes
  • Patent number: 10601095
    Abstract: An anaerobic aluminum-water electrochemical cell that includes: a plurality of electrode stacks, each electrode stack comprising an aluminum or aluminum alloy anode, and at least one solid cathode configured to be electrically coupled to the anode; a liquid electrolyte between the anode and the at least one cathode; one or more physical separators between each electrode stack adjacent to the cathode; a housing configured to hold the electrode stacks, the electrolyte, and the physical separators; and a water injection port, in the housing, configured to introduce water into the housing. The electrolyte includes a hydroxide base at a concentration of at least 0.05 M to at most 3 M.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: March 24, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Ian Salmon McKay, Ruaridh R. Macdonald, Thomas B. Milnes