Patents by Inventor Ian Shay

Ian Shay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070227255
    Abstract: Observability of damage precursor, damage and usage states, or event occurrence may be enhanced by modifying component materials to include self-monitoring materials or by processing test material to alter the surface properties. The properties of the self monitoring materials, such as magnetic permeability or electrical conductivity, are monitored with electromagnetic sensors and provide greater property variations with component condition than the original component material. Processing includes shot peening or laser welding.
    Type: Application
    Filed: January 25, 2007
    Publication date: October 4, 2007
    Inventors: Neil Goldfine, Vladimir Zilberstein, David Grundy, Andrew Washabaugh, Darrell Schlicker, Ian Shay, Robert Lyons, Christopher Craven, Christopher Root, Mark Windoloski, Volker Weiss
  • Publication number: 20070114993
    Abstract: Described are methods for monitoring of stresses and other material properties. These methods use measurements of effective electrical properties, such as magnetic permeability and electrical conductivity, to infer the state of the test material, such as the stress, temperature, or overload condition. The sensors, which can be single element sensors or sensor arrays, can be used to periodically inspect selected locations, mounted to the test material, or scanned over the test material to generate two-dimensional images of the material properties. Magnetic field or eddy current based inductive and giant magnetoresistive sensors may be used on magnetizable and/or conducting materials, while capacitive sensors can be used for dielectric materials. Methods are also described for the use of state-sensitive layers to determine the state of materials of interest. These methods allow the weight of articles, such as aircraft, to be determined.
    Type: Application
    Filed: November 30, 2005
    Publication date: May 24, 2007
    Inventors: Neil Goldfine, Ian Shay, Darrell Schlicker, Andrew Washabaugh, David Grundy, Robert Lyons, Vladimir Zilberstein, Vladimir Tsukernik
  • Publication number: 20060186880
    Abstract: An automated drawing tool and a method for drawing a sensor layout. A sensor is drawn by selecting a sensor family, each sensor of the sensor family having at least one drive element to impose a magnetic field in a test material when driven by an electric signal, and at least one sense element for sensing a response of the test material. A set of layout rules are associated with the sensor family and are used in determining a sensor-layout. The automated drawing tool processes input information and the layout rules, for the sensor family, to automatically draw the sensor.
    Type: Application
    Filed: April 20, 2006
    Publication date: August 24, 2006
    Inventors: Darrell Schlicker, Neil Goldfine, Andrew Washabaugh, Karen Walrath, Ian Shay, David Grundy, Mark Windoloski
  • Publication number: 20060076952
    Abstract: Apparatus and methods are described for assessing material condition through magnetic field measurements that provide material property information at multiple depths into the material. The measurements are obtained from sense elements located at different distances from an excitation drive winding, with the area of each sense element adjusted so that the flux of magnetic field through each sense element is approximately the same when over a reference material. These sense element responses can be combined, for example by subtraction, to enhance sensitivity to hidden features, such as cracks beneath fastener heads, while reducing the influence from variable effects, such as fastener material type and placement. Measurement responses can also be converted into effective material properties, using a model that accounts for known properties of the sensor and test material, which are then correlated with the size of the surface breaking or hidden features.
    Type: Application
    Filed: February 11, 2005
    Publication date: April 13, 2006
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Darrell Schlicker, David Grundy, Mark Windoloski, Ian Shay, Andrew Washabaugh
  • Patent number: 6995557
    Abstract: A sensor that characterizes welds in materials. The sensor includes a meandering drive winding with at least three extended portions and at least one sensing element placed between an adjacent pair of extended portions. A time varying electric current is passed through the extended portions to form a magnetic field. The sensor is placed in proximity to the test material and translated over the weld region. An electrical property of the weld region is measured for each sensing element location. The weld quality is determined using a feature of the electrical property measurement and location.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: February 7, 2006
    Assignee: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Vladimir A. Zilberstein, Darrell E. Schlicker, David C. Grundy, Ian Shay, Andrew P. Washabaugh
  • Patent number: 6992482
    Abstract: Magnetic field sensor probes are disclosed which comprise primary or drive windings having a plurality of current carrying segments. The relative magnitude and direction of current in each segment are adjusted so that the resulting interrogating magnetic field follows a desired spatial distribution. By changing the current in each segment, more than one spatial distribution for the magnetic field can be imposed within the same sensor footprint. Example envelopes for the current distributions approximate a sinusoid in Cartesian coordinates or a first-order Bessel function in polar coordinates. One or more sensing elements are used to determine the response of a test material to the magnetic field. These sense elements can be configured into linear or circumferential arrays.
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: January 31, 2006
    Assignee: Jentek Sensors, Inc.
    Inventors: Ian Shay, Neil J. Goldfine, Andrew P. Washabaugh, Darrell E. Schlicker
  • Publication number: 20060009865
    Abstract: The condition of internal or hidden material layers or interfaces is monitored and used for control of a process that changes a condition of a material system. The material system has multiple component materials, such as layers or embedded constituents, or can be represented with multiple layers to model spatial distributions in the material properties. The material condition changes as a result of a process performed on the material, such as by cold working, or from functional operation. Sensors placed proximate to the test material surface or embedded between material layers are used to monitor a material property using magnetic, electric, or thermal interrogation fields. The sensor responses are converted into states of the material condition, such as temperature or residual stress, typically with a precomputed database of sensor responses.
    Type: Application
    Filed: March 14, 2005
    Publication date: January 12, 2006
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Vladimir Zilberstein, Ian Shay, Christopher Craven, David Grundy, Volker Weiss, Andrew Washabaugh
  • Publication number: 20060009923
    Abstract: Magnetic field sensor probes are disclosed which comprise primary or drive windings having a plurality of current carrying segments. The relative magnitude and direction of current in each segment are adjusted so that the resulting interrogating magnetic field follows a desired spatial distribution. By changing the current in each segment, more than one spatial distribution for the magnetic field can be imposed within the same sensor footprint. Example envelopes for the current distributions approximate a sinusoid in Cartesian coordinates or a first-order Bessel function in polar coordinates. One or more sensing elements are used to determine the response of a test material to the magnetic field. These sense elements can be configured into linear or circumferential arrays.
    Type: Application
    Filed: September 15, 2005
    Publication date: January 12, 2006
    Inventors: Ian Shay, Neil Goldfine, Andrew Washabaugh, Darrell Schlicker
  • Publication number: 20050248339
    Abstract: Inductive sensors measure the near surface properties of conducting and magnetic material. A sensor may have primary windings with parallel extended winding segments to impose a spatially periodic magnetic field in a test material. Those extended portions may be formed by adjacent portions of individual drive coils. Sensing elements provided every other half wavelength may be connected together in series while the sensing elements in adjacent half wavelengths are spatially offset. Certain sensors include circular segments which create a circularly symmetric magnetic field that is periodic in the radial direction. Such sensors are particularly adapted to surround fasteners to detect cracks and can be mounted beneath a fastener head. In another sensor, sensing windings are offset along the length of parallel winding segments to provide material measurements over different locations when the circuit is scanned over the test material.
    Type: Application
    Filed: February 11, 2005
    Publication date: November 10, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Darrell Schlicker, David Grundy, Mark Windoloski, Ian Shay, Andrew Washabaugh
  • Publication number: 20050171703
    Abstract: Methods are described for assessing material condition. These methods include the use of multiple source fields for interrogating and loading of a multicomponent test material. Source fields include electric, magnetic, thermal, and acoustic fields. The loading field preferentially changes the material properties of a component of the test material, which allows the properties of the component materials to be separated. Methods are also described for monitoring changes in material state using separate drive and sense electrodes with some of the electrodes positioned on a hidden or even embedded material surface. Statistical characterization of the material condition is performed with sensor arrays that provide multiple responses for the material condition during loading. The responses can be combined into a statistical population that permits tracking with respect to loading history.
    Type: Application
    Filed: January 14, 2005
    Publication date: August 4, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Darrell Schlicker, Vladimir Zilberstein, Andrew Washabaugh, Volker Weiss, Christopher Craven, Ian Shay, David Grundy, Karen Walrath, Robert Lyons
  • Publication number: 20050127908
    Abstract: Methods and apparatus are described for absolute electrical property measurement of materials. This is accomplished with magnetic and electric field based sensors and sensor array geometries that can be modeled accurately and with impedance instrumentation that permits accurate measurements of the in-phase and quadrature phase signal components. A dithering calibration method is also described which allows the measurement to account for background material noise variations. Methods are also described for accounting for noise factors in sensor design and selection of the optimal operating conditions which can minimize the error bounds for material property estimates. Example application of these methods to automated engine disk slot inspection and assessment of the mechanical condition of dielectric materials are presented.
    Type: Application
    Filed: October 12, 2004
    Publication date: June 16, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Darrell Schlicker, Neil Goldfine, David Grundy, Robert Lyons, Vladimir Zilberstein, Andrew Washabaugh, Vladimir Tsukernik, Mark Windoloski, Ian Shay
  • Publication number: 20050088172
    Abstract: Quasistatic sensor responses may be converted into multiple model parameters to characterize hidden properties of a material. Methods of conversion use databases of responses and, in some cases, databases that include derivatives of the responses, to estimate at least three unknown model parameters, such as the electrical conductivity, magnetic permeability, dielectric permittivity, thermal conductivity, and/or layer thickness. These parameter responses are then used to obtain a quantitative estimate of a property of a hidden feature, such as corrosion loss layer thicknesses, inclusion size and depth, or stress variation. The sensors can be single element sensors or sensor arrays and impose an interrogation electric, magnetic, or thermal field.
    Type: Application
    Filed: September 3, 2004
    Publication date: April 28, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Vladimir Zilberstein, Darrell Schlicker, David Grundy, Ian Shay, Robert Lyons, Andrew Washabaugh
  • Publication number: 20050083032
    Abstract: Observability of damage precursor, damage and usage states, or event occurrence may be enhanced by modifying component materials to include self-monitoring materials or by processing test material to alter the surface properties. The properties of the self monitoring materials, such as magnetic permeability or electrical conductivity, are monitored with electromagnetic sensors and provide greater property variations with component condition than the original component material. Processing includes shot peening or laser welding.
    Type: Application
    Filed: September 8, 2004
    Publication date: April 21, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Vladimir Zilberstein, David Grundy, Andrew Washabaugh, Darrell Schlicker, Ian Shay, Robert Lyons, Christopher Craven, Christopher Root, Mark Windoloski, Volker Weiss
  • Publication number: 20050007106
    Abstract: Combined wound and micro-fabricated winding constructs are described for the inspection of materials and the detection and characterization of hidden features or flaws. These constructs can be configured as sensors or sensor arrays that are surface mounted or scanned over conducting and/or magnetizable test materials. The well-defined geometry obtained micro-fabricated windings and from carefully wound coils with known winding positions permits the use of model based inversions of sensed responses into material properties. In a preferred embodiment, the primary winding is a wound coil and the sense elements are etched or printed. The drive or sense windings can also be mounted under fasteners to improve sensitivity to hidden flaws. Ferrites and other means may be used to guide the magnetic flux and enhance the magnetic field in the test material.
    Type: Application
    Filed: May 24, 2004
    Publication date: January 13, 2005
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil Goldfine, Darrell Schlicker, Andrew Washabaugh, Ian Shay, Mark Windoloski, Christopher Root, Vladimir Zilberstein, David Grundy, Vladimir Tsukernik
  • Publication number: 20040239317
    Abstract: A sensor that characterizes welds in materials. The sensor includes a meandering drive winding with at least three extended portions and at least one sensing element placed between an adjacent pair of extended portions. A time varying electric current is passed through the extended portions to form a magnetic field. The sensor is placed in proximity to the test material and translated over the weld region. An electrical property of the weld region is measured for each sensing element location. The weld quality is determined using a feature of the electrical property measurement and location.
    Type: Application
    Filed: February 27, 2004
    Publication date: December 2, 2004
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Vladimir A. Zilberstein, Darrell E. Schlicker, David C. Grundy, Ian Shay, Andrew P. Washabaugh
  • Patent number: 6727691
    Abstract: A sensor that characterizes welds in materials. The sensor includes a meandering drive winding with at least three extended portions and at least one sensing element placed between an adjacent pair of extended portions. A time varying electric current is passed through the extended portions to form a magnetic field. The sensor is placed in proximity to the test material and translated over the weld region. An electrical property of the weld region is measured for each sensing element location. The weld quality is determined using a feature of the electrical property measurement and location.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: April 27, 2004
    Assignee: Jentek Sensors, Inc.
    Inventors: Neil J. Goldfine, Vladimir A. Zilberstein, Darrell E. Schlicker, David C. Grundy, Ian Shay, Andrew P. Washabaugh
  • Publication number: 20020158626
    Abstract: The combination of giant magnetoresistive (GMR) sensing element arrays with shaped field, distributed drive windings provides a deep measurement capability for magnetic and/or conducting materials. Sensor designs are disclosed that use either sinusoidal or first order Bessel function shaped quasistatic field drive designs with a method to provide two magnetic field penetration depths within the same sensor footprint and at the same temporal excitation frequency. An easy to model drive construct supports substantial calibration requirement reduction and rapid generation of sensor response databases called measurement grids used for rapid estimation of multiple properties. Use of one deep penetration drive with an array of GMR sensing elements provides both high-resolution imaging and sensitivity deep into complex structures.
    Type: Application
    Filed: November 8, 2001
    Publication date: October 31, 2002
    Applicant: Jentek Sensors, Inc.
    Inventors: Ian Shay, Neil J. Goldfine, Andrew P. Washabaugh, Darrell E. Schlicker
  • Publication number: 20020105325
    Abstract: A sensor that characterizes welds in materials. The sensor includes a meandering drive winding with at least three extended portions and at least one sensing element placed between an adjacent pair of extended portions. A time varying electric current is passed through the extended portions to form a magnetic field. The sensor is placed in proximity to the test material and translated over the weld region. An electrical property of the weld region is measured for each sensing element location. The weld quality is determined using a feature of the electrical property measurement and location.
    Type: Application
    Filed: January 15, 2002
    Publication date: August 8, 2002
    Applicant: JENTEK Sensors, Inc.
    Inventors: Neil J. Goldfine, Vladimir A. Zilberstein, Darrell E. Schlicker, David C. Grundy, Ian Shay, Andrew P. Washabaugh