Patents by Inventor Ian Tomlinson

Ian Tomlinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170145080
    Abstract: The invention provides a dual-specific ligand comprising a first immunoglobulin variable domain having a first binding specificity and a complementary or non-complementary immunoglobulin variable domain having a second binding specificity.
    Type: Application
    Filed: October 28, 2015
    Publication date: May 25, 2017
    Inventors: Ian TOMLINSON, Laurent Jespers, Jasper Clube, Lucy J. Holt., Oliver Schon
  • Publication number: 20170135358
    Abstract: A method for reducing bacterial contamination on a food surface. The method comprises applying to the food surface an N—C6-C18 acyl amino acid ester and a methylcellulose. The methylcellulose has anhydroglucose units joined by 1-4 linkages wherein hydroxy groups of anhydroglucose units are substituted with methyl groups such that s23/s26 is 0.36 or less, wherein s23 is the molar fraction of anhydroglucose units wherein only the two hydroxy groups in the 2- and 3-positions of the anhydroglucose unit are substituted with methyl groups and wherein s26 is the molar fraction of anhydroglucose units wherein only the two hydroxy groups in the 2- and 6-positions of the anhydroglucose unit are substituted with methyl groups.
    Type: Application
    Filed: July 6, 2015
    Publication date: May 18, 2017
    Applicants: Dow Global Technologies LLC, Dow Global Technologies LLC
    Inventors: Jaime L. Curtis-Fisk, Puspendu Deo, Stephanie L. Hughes, Janardhanan S. Rajan, Ian A. Tomlinson
  • Patent number: 9616392
    Abstract: A thin film composite polyamide membrane comprising a porous support and a thin film polyamide layer characterized by possessing: i) an azo (—N?N—) content of from 0.30% to 0.80%, as measured by pyrolysis gas chromatography; and ii) a dissociated carboxylate content of at least 0.18 mol/kg as measured by RBS at pH 9.5.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: April 11, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Ian A. Tomlinson, Robert C. Cieslinski, Bruce B. Gerhart, David D. Hawn, Mou Paul, XiaoHua Qiu, Mark A. Rickard, Steven Rosenberg, Abhishek Roy, Chengli Zu
  • Patent number: 9610542
    Abstract: A thin film composite membrane including a porous support and a thin film polyamide layer characterized by having a dissociated carboxylate content of at least 0.45 moles/kg at pH 9.5 and a method for making a composite polyamide applying a polar solution comprising a polyfunctional amine monomer and a non-polar solution comprising a polyfunctional amine-reactive monomer to a surface of the porous support and interfacially polymerizing the monomers to form a thin film polyamide layer, wherein the method is characterized by the non-polar solution comprising at least 0.025 wt % of an acid compound including at least one carboxylic acid moiety and at least one amine-reactive moiety selected from acyl halide and anhydride.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: April 4, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Abhishek Roy, Tina L. Arrowood, Robert C. Cieslinski, David D. Hawn, Steven D. Jons, Mou Paul, Martin H. Peery, XiaoHua Qiu, Steven Rosenberg, Ian A. Tomlinson, Chengli Zu
  • Publication number: 20170073765
    Abstract: The invention provides an assay useful in predicting risk of 5-fluorouracil (FU) toxicity in a subject. The subject may be screened for the presence of at least one TYMS polymorphism and/or at least one DPYD polymorphism. Suitable TYMS and DPYD polymorphisms are provided. The presence of one or more of the polymorphisms indicates an increased risk of developing FU toxicity; a negative result may indicate a decreased risk of developing FU toxicity.
    Type: Application
    Filed: March 2, 2015
    Publication date: March 16, 2017
    Inventors: David Kerr, Ian Tomlinson, Dan Rosmarin, Claire Palles
  • Publication number: 20170065938
    Abstract: A method for making a composite polyamide membrane including a porous support and a thin film polyamide layer, wherein the method includes: applying a polar solution comprising a polyfunctional amine monomer and a non-polar solution comprising a polyfunctional acyl halide monomer to a surface of a porous support and interfacially polymerizing the monomers to form a thin film polyamide layer; and exposing the thin film polyamide layer to nitrous acid; and wherein the method is characterized by treating the thin film polyamide layer with a halogenated benzene compound represented by formula (a) wherein: X is selected from a halogen; Y is selected from hydrogen, carboxylic acid, sulfonic acid; and A, A?, A? and A?? are independently selected from: halogen, hydrogen, hydroxyl, alkoxy, ester, amino, keto-amide, and an alkyl group with the proviso that at least one of A, A?, A? and A?? is selected from: hydroxyl, amino, keto-amide, and wherein the substituent in the ortho or para to at least one of A, A?, A? and A?
    Type: Application
    Filed: May 5, 2015
    Publication date: March 9, 2017
    Inventors: Mou Paul, Abhishek Roy, Derek M. Stevens, Ian A. Tomlinson
  • Publication number: 20170050152
    Abstract: A method for making a composite polyamide including the steps of: i) applying a polar solution comprising a polyfunctional amine monomer and a non-polar solution comprising a polyfunctional acyl halide monomer to a surface of a porous support and interfacially polymerizing the monomers to form a thin film polyamide layer; ii) treating the thin film polyamide layer with a polyfunctional arene compound; and iii) exposing the thin film polyamide layer to nitrous acid; wherein the non-polar solutions further comprises at least one of the following: (A) at least 50 vol % of a C5 to C20 aliphatic hydrocarbon and from 2 to 25 vol % of benzene or benzene substituted with one or more C1 to C6 alkyl groups; and (B) an acid-containing monomer comprising a C2-C20 hydrocarbon moiety substituted with at least one carboxylic acid functional group or salt thereof and at least one amine-reactive functional group.
    Type: Application
    Filed: May 5, 2015
    Publication date: February 23, 2017
    Inventors: Mou Paul, Ian A. Tomlinson, Abhishek Roy
  • Patent number: 9562090
    Abstract: The invention relates to anti-TNFR1 polypeptides and antibody single variable domains (dAbs) that are resistant to degradation by a protease, as well as antagonists comprising these. The polypeptides, dAbs and antagonists are useful for as therapeutics and/or prophylactics that are likely to encounter proteases when administered to a patient, for example for pulmonary administration, oral administration, delivery to the lung and delivery to the GI tract of a patient, as well as for treating inflammatory disease, such as arthritis or COPD.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: February 7, 2017
    Assignee: Domantis Limited
    Inventors: Laurent Jespers, Malgorzata Pupecka, Carolyn Enever, Ian Tomlinson
  • Patent number: 9555378
    Abstract: A thin film composite polyamide membrane comprising a porous support and a thin film polyamide layer characterized by possessing an azo (—N?N—) content of from 0.75% to 0.95%, as measured by pyrolysis gas chromatography.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: January 31, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Abhishek Roy, Robert C. Cieslinski, Bruce B. Gerhart, David D. Hawn, Mou Paul, XiaoHua Qiu, Mark A. Rickard, Steven Rosenberg, Ian A. Tomlinson, Chengli Zu
  • Publication number: 20160325239
    Abstract: thin film composite membrane comprising a thin film polyamide layer located between a porous support and a coating layer, wherein the coating layer comprises a cellulose-based polymer including a plurality of quaternary ammonium groups or salts thereof.
    Type: Application
    Filed: January 26, 2015
    Publication date: November 10, 2016
    Inventors: Roland ADDEN, Tina L. ARROWOOD, Patrick S. HANLEY, Hao JU, Ian A. TOMLINSON
  • Publication number: 20160317977
    Abstract: A method for making a composite polyamide membrane including the step of applying a polar solution including a polyfunctional amine monomer and a non-polar solution comprising a polyfunctional acyl halide monomer to a surface of a porous support and interfacially polymerizing the monomers to form a thin film polyamide layer, wherein the method is characterized by including a tri-hydrocarbyl phosphate within the polar coating solution. The thin film polyamide layer is characterized by possessing an equilibrium water swelling factor of greater than 35% as measured by PFT-AFM.
    Type: Application
    Filed: December 15, 2014
    Publication date: November 3, 2016
    Inventors: Abhishek Roy, Nicholas S. Beck, Robert C. Cieslinski, Bruce B. Gerhart, David D. Hawn, Duane Jacobson, Mou Paul, Carl W. Reinhardt, Katmerka Tabakovic, Ian A. Tomlinson
  • Publication number: 20160317980
    Abstract: A thin film composite polyamide membrane comprising a porous support and a thin film polyamide layer characterized by possessing: i) an azo (—N?N—) content of from 0.30% to 0.80%, as measured by pyrolysis gas chromatography; and ii) a dissociated carboxylate content of at least 0.18 mol/kg as measured by RBS at pH 9.5.
    Type: Application
    Filed: December 15, 2014
    Publication date: November 3, 2016
    Inventors: Ian A. Tomlinson, Robert C. Cieslinski, Bruce B. Gerhart, David D. Hawn, Mou Paul, XiaoHua Qiu, Mark A. Rickard, Steven Rosenberg, Abhishek Roy, Chengli Zu
  • Publication number: 20160310909
    Abstract: A thin film composite polyamide membrane comprising a porous support and a thin film polyamide layer characterized by possessing: i) an azo (—N?N—) content of from 0.40% to 1.00%, as measured by pyrolysis gas chromatography; and ii) a dissociated carboxylate content of at least 0.40 mol/kg as measured by RBS at pH 9.5.
    Type: Application
    Filed: December 15, 2014
    Publication date: October 27, 2016
    Inventors: Mou PAUL, Robert C. CIESLINSKI, Bruce B. GERHART, David D. HAWN, XiaoHua QIU, Mark A. RICKARD, Steven ROSENBERG, Abhishek ROY, Ian A. TOMLINSON, Chengli ZU
  • Publication number: 20160303519
    Abstract: A method for treating an aqueous mixture containing an anionic surfactant including the step of passing the mixture through a spiral wound element to produce a permeate stream and concentrate stream wherein the concentrate stream has a relatively higher concentration of the anionic surfactant than the permeate stream, wherein the spiral wound element includes a composite polyamide membrane comprising a porous support and a thin film polyamide layer, and wherein the membrane is characterized by having: i) a NaCl rejection and an anionic rejection of at least 99% when tested with an aqueous solution containing 2000 ppm NaCl and 2 ppm an anionic surfactant at 25° C., pH 8 and ImPa (150 psi); and ii) a dissociated carboxylate content of at least 0.3 moles/kg of polyamide at pH 9.5 as measured by Rutherford Backscattering (RBS).
    Type: Application
    Filed: December 15, 2014
    Publication date: October 20, 2016
    Inventors: Ian A. Tomlinson, Mou Paul, Martin H. Peery, Abhishek Roy
  • Publication number: 20160304363
    Abstract: A method for separating hydrocarbons and naphthenic acid from an aqueous mixture containing the same by passing the mixture through a spiral wound element to produce a permeate stream and concentrate stream wherein the concentrate stream has a relatively higher concentration of hydrocarbons than the permeate stream, wherein the spiral wound element includes a composite poly amide membrane comprising a porous support and a thin film poly amide layer, wherein the membrane is characterized by having: i) a NaCl rejection and a benzene tetra carboxylic acid rejection of at least 98% when tested with an aqueous solution containing 2000 ppm NaCl and 100 ppm benzene tetra carboxylic acid at 25° C., pH 8 and ImPa (150 psi); and ii) a dissociated carboxylate content of at least 0.3 moles/kg of polyamide at pH 9.5 as measured by Rutherford Backscattering (RBS).
    Type: Application
    Filed: December 15, 2014
    Publication date: October 20, 2016
    Inventors: Abhishek Roy, Leaelaf Mengistu Hailemariam, Mou Paul, Ian A. Tomlinson
  • Publication number: 20160303520
    Abstract: A thin film composite polyamide membrane comprising a porous support and a thin film polyamide layer characterized by possessing an azo (—N?N—) content of from 0.75% to 0.95%, as measured by pyrolysis gas chromatography.
    Type: Application
    Filed: December 15, 2014
    Publication date: October 20, 2016
    Inventors: Abhishek Roy, Robert C. Cieslinski, Bruce B. Gerhart, David D. Hawn, Mou Paul, XiaoHua Qiu, Mark A. Rickard, Steven Rosenberg, Ian A. Tomlinson, Chengli Zu
  • Publication number: 20160303516
    Abstract: A method for treating a NaCl containing aqueous mixture comprising at least 2 ppm of anionic nano particles comprising the step of passing the mixture through a spiral wound element to produce a permeate stream and concentrate stream wherein the concentrate stream has a relatively higher concentration of nano particles than the permeate stream, wherein the spiral wound element includes a composite polyamide membrane comprising a porous support and a thin film polyamide layer, and wherein the membrane is characterized by having: i) a NaCl rejection and a nano particle rejection of at least 99% when tested with an aqueous solution containing 2000 ppm NaCl and 2 ppm anionic nano particles at 25 C, pH 8 and 1 mPa (150 psi); and ii) a dissociated carboxylate content of at least 0.3 moles/kg of polyamide at pH 9.5 as measured by Rutherford Backscattering (RBS).
    Type: Application
    Filed: December 15, 2014
    Publication date: October 20, 2016
    Inventors: Mou Paul, Abhishek Roy, Ian A. Tomlinson
  • Patent number: 9452391
    Abstract: A method for making a composite polyamide membrane comprising a porous support and a polyamide layer, including the steps of: i) applying a polar solution including a polyfunctional amine monomer and a non-polar solution including a polyfunctional acyl halide monomer to a surface of a porous support and interfacially polymerizing the monomers to form a polyamide layer; ii) applying a dihydroxyaryl compound to the polyamide layer, wherein the dihydroxyaryl compound is represented by: formula wherein D, D?, D? and D?? are independently selected from: alkyl, alkoxy, hydrogen, halogen, hydroxyl and amine, and L is a linking group; and iii) exposing the thin film polyamide layer to nitrous acid.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: September 27, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Patrick S. Hanley, Mou Paul, Abhishek Roy, Ian A. Tomlinson
  • Publication number: 20160271567
    Abstract: A method for making a composite polyamide membrane including a porous support and a thin film polyamide layer, wherein the method includes: (i) applying a polar solution comprising a polyfunctional amine monomer and a non-polar solution comprising a polyfunctional acyl halide monomer to a surface of a porous support and interfacially polymerizing the monomers to form a thin film polyamide layer; (ii) treating the thin film polyamide layer with a polyfunctional arene compound; and (iii) exposing the thin film polyamide layer to nitrous acid; wherein the polar and non-polar solutions further comprises at least one of the following: (A) at least one of the solutions further comprises a tri-hydrocarbyl phosphate compound represented by Formula (I): and (B) the non-polar solution further comprises an acid-containing monomer comprising a C2-C20 hydrocarbon moiety substituted with at least one carboxylic acid functional group or salt thereof and at least one amine-reactive functional group.
    Type: Application
    Filed: October 29, 2014
    Publication date: September 22, 2016
    Inventors: Mou PAUL, Abhishek ROY, Ian A. TOMLINSON
  • Publication number: 20160271569
    Abstract: A method for making a composite polyamide membrane comprising a porous support and a polyamide layer, including the steps of: i) applying a polar solution including a polyfunctional amine monomer and a non-polar solution including a polyfunctional acyl halide monomer to a surface of a porous support and interfacially polymerizing the monomers to form a polyamide layer; ii) applying a dihydroxyaryl compound to the polyamide layer, wherein the dihydroxyaryl compound is represented by: formula wherein D, D?, D? and D?? are independently selected from: alkyl, alkoxy, hydrogen, halogen, hydroxyl and amine, and L is a linking group; and iii) exposing the thin film polyamide layer to nitrous acid.
    Type: Application
    Filed: October 29, 2014
    Publication date: September 22, 2016
    Inventors: Patrick S. HANLEY, Mou PAUL, Abhishek ROY, Ian A. TOMLINSON