Patents by Inventor Ibrahim Karaman

Ibrahim Karaman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11929219
    Abstract: A shape-memory alloy actuated switch (SMAAS) is provided that enables the stable switching of two separate circuits. The presently disclosed SMAAS includes a substrate, one or more electrical contacts attached to the substrate for connecting to load circuits, and one or more electrically conductive elements for selectively connecting the one or more electrical contacts. The disclosed SMAAS also includes one or more shape-memory alloy actuators attached to the substrate. The one or more shape-memory alloy actuators are configured to move the one or more electrically conductive elements. The shape-memory alloy actuators are self-heated by passing current through the shape-memory alloy material. The disclosed SMAAS may also include electrical contacts to connect an external control current to the shape-memory alloy material. In some examples, the provided SMAAS includes one or more retention mechanisms to prevent movement of the electrically conductive elements after actuation.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: March 12, 2024
    Assignee: QATAR FOUNDATION FOR EDUCATION, SCIENCE AND COMMUNITY DEVELOPMENT
    Inventors: Robert S. Balog, Ibrahim Karaman, Moustafa Tawfik Omar Raslan
  • Patent number: 11643698
    Abstract: A controlled thermal coefficient product manufacturing system and method is disclosed. The disclosed product relates to the manufacture of metallic material product (MMP) having a thermal expansion coefficient (TEC) in a predetermined range. The disclosed system and method provides for a first material deformation (FMD) of the MMP that comprises at least some of a first material phase (FMP) wherein the FMP comprises martensite randomly oriented and a first thermal expansion coefficient (FTC). In response to the FMD at least some of the FMP is oriented in at least one predetermined orientation. Subsequent to deformation, the MMP comprises a second thermal expansion coefficient (STC) that is within a predetermined range and wherein the thermal expansion of the MMP is in at least one predetermined direction. The MMP may be comprised of a second material phase (SMP) that may or may not transform to the FMP in response to the FMD.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: May 9, 2023
    Inventors: James Alan Monroe, Ibrahim Karaman, Raymundo Arroyave
  • Publication number: 20230090594
    Abstract: A shape-memory alloy actuated switch (SMAAS) is provided that enables the stable switching of two separate circuits. The presently disclosed SMAAS includes a substrate, one or more electrical contacts attached to the substrate for connecting to load circuits, and one or more electrically conductive elements for selectively connecting the one or more electrical contacts. The disclosed SMAAS also includes one or more shape-memory alloy actuators attached to the substrate. The one or more shape-memory alloy actuators are configured to move the one or more electrically conductive elements. The shape-memory alloy actuators are self-heated by passing current through the shape-memory alloy material. The disclosed SMAAS may also include electrical contacts to connect an external control current to the shape-memory alloy material. In some examples, the provided SMAAS includes one or more retention mechanisms to prevent movement of the electrically conductive elements after actuation.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 23, 2023
    Inventors: Robert S. Balog, Ibrahim Karaman, Moustafa Tawfik Omar Raslan
  • Patent number: 11515101
    Abstract: A shape-memory alloy actuated switch (SMAAS) is provided that enables the stable switching of two separate circuits. The presently disclosed SMAAS includes a substrate, one or more electrical contacts attached to the substrate for connecting to load circuits, and one or more electrically conductive elements for selectively connecting the one or more electrical contacts. The disclosed SMAAS also includes one or more shape-memory alloy actuators attached to the substrate. The one or more shape-memory alloy actuators are configured to move the one or more electrically conductive elements. The shape-memory alloy actuators are self-heated by passing current through the shape-memory alloy material. The disclosed SMAAS may also include electrical contacts to connect an external control current to the shape-memory alloy material. In some examples, the provided SMAAS includes one or more retention mechanisms to prevent movement of the electrically conductive elements after actuation.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: November 29, 2022
    Assignee: QATAR FOUNDATION FOR EDUCATION, SCIENCE AND COMMUNITY DEVELOPMENT
    Inventors: Robert S. Balog, Ibrahim Karaman, Moustafa Tawfik Omar Raslan
  • Patent number: 11492675
    Abstract: Systems and methods disclosed herein relate to the manufacture of metallic material with a thermal expansion coefficient in a predetermined range, comprising: deforming, a metallic material comprising a first phase and a first thermal expansion coefficient. In response to the deformation, at least some of the first phase is transformed into a second phase, wherein the second phase comprises martensite, and orienting the metallic material in at least one predetermined orientation, wherein the metallic material, subsequent to deformation, comprises a second thermal expansion coefficient, wherein the second thermal expansion coefficient is within a predetermined range, and wherein the thermal expansion is in at least one predetermined direction. In some embodiments, the metallic material comprises the second phase and is thermo-mechanically deformed to orient the grains in at least one direction.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: November 8, 2022
    Inventors: James Alan Monroe, Ibrahim Karaman, Raymundo Arroyave
  • Patent number: 11486016
    Abstract: Systems and methods disclosed herein relate to the manufacture of metallic material with a thermal expansion coefficient in a predetermined range, comprising: deforming, a metallic material comprising a first phase and a first thermal expansion coefficient. In response to the deformation, at least some of the first phase is transformed into a second phase, wherein the second phase comprises martensite, and orienting the metallic material in at least one predetermined orientation, wherein the metallic material, subsequent to deformation, comprises a second thermal expansion coefficient, wherein the second thermal expansion coefficient is within a predetermined range, and wherein the thermal expansion is in at least one predetermined direction. In some embodiments, the metallic material comprises the second phase and is thermo-mechanically deformed to orient the grains in at least one direction.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: November 1, 2022
    Inventors: James Alan Monroe, Ibrahim Karaman, Raymundo Arroyave
  • Publication number: 20220219239
    Abstract: A method for determining alloy processing parameters is provided. Simulated melt pool temperature and melt pool geometries can be used to create an initial printability map based on laser speed and laser power, and the printability map can include regions with potential manufacturing defects. Single-track experiments can be used to calibrate the printability map, to produce a revised printability map. Finally, contour lines representing hatch spacing can also be added to the revised printability map to produce a final printability map that can be used to configure additive manufacturing machinery.
    Type: Application
    Filed: October 13, 2021
    Publication date: July 14, 2022
    Inventors: Alaa Elwany, Ibrahim Karaman, Raymundo Arroyave, Raiyan Seede, Bing Zhang, Luke Johnson
  • Publication number: 20210035748
    Abstract: A shape-memory alloy actuated switch (SMAAS) is provided that enables the stable switching of two separate circuits. The presently disclosed SMAAS includes a substrate, one or more electrical contacts attached to the substrate for connecting to load circuits, and one or more electrically conductive elements for selectively connecting the one or more electrical contacts. The disclosed SMAAS also includes one or more shape-memory alloy actuators attached to the substrate. The one or more shape-memory alloy actuators are configured to move the one or more electrically conductive elements. The shape-memory alloy actuators are self-heated by passing current through the shape-memory alloy material. The disclosed SMAAS may also include electrical contacts to connect an external control current to the shape-memory alloy material. In some examples, the provided SMAAS includes one or more retention mechanisms to prevent movement of the electrically conductive elements after actuation.
    Type: Application
    Filed: July 29, 2020
    Publication date: February 4, 2021
    Inventors: Robert S. Balog, Ibrahim Karaman, Moustafa Tawfik Omar Raslan
  • Publication number: 20210002739
    Abstract: A controlled thermal coefficient product manufacturing system and method is disclosed. The disclosed product relates to the manufacture of metallic material product (MMP) having a thermal expansion coefficient (TEC) in a predetermined range. The disclosed system and method provides for a first material deformation (FMD) of the MMP that comprises at least some of a first material phase (FMP) wherein the FMP comprises martensite randomly oriented and a first thermal expansion coefficient (FTC). In response to the FMD at least some of the FMP is oriented in at least one predetermined orientation. Subsequent to deformation, the MMP comprises a second thermal expansion coefficient (STC) that is within a predetermined range and wherein the thermal expansion of the MMP is in at least one predetermined direction. The MMP may be comprised of a second material phase (SMP) that may or may not transform to the FMP in response to the FMD.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Applicant: The Texas A&M University System
    Inventors: James Alan Monroe, Ibrahim Karaman, Raymundo Arroyave
  • Patent number: 10822670
    Abstract: A controlled thermal coefficient product manufacturing system and method is disclosed. The disclosed product relates to the manufacture of metallic material product (MMP) having a thermal expansion coefficient (TEC) in a predetermined range. The disclosed system and method provides for a first material deformation (FMD) of the MMP that comprises at least some of a first material phase (FMP) wherein the FMP comprises martensite randomly oriented and a first thermal expansion coefficient (FTC). In response to the FMD at least some of the FMP is oriented in at least one predetermined orientation. Subsequent to deformation, the MMP comprises a second thermal expansion coefficient (STC) that is within a predetermined range and wherein the thermal expansion of the MMP is in at least one predetermined direction. The MMP may be comprised of a second material phase (SMP) that may or may not transform to the FMP in response to the FMD.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: November 3, 2020
    Inventors: James Alan Monroe, Ibrahim Karaman, Raymundo Arroyave
  • Publication number: 20200140969
    Abstract: Systems and methods disclosed herein relate to the manufacture of metallic material with a thermal expansion coefficient in a predetermined range, comprising: deforming, a metallic material comprising a first phase and a first thermal expansion coefficient. In response to the deformation, at least some of the first phase is transformed into a second phase, wherein the second phase comprises martensite, and orienting the metallic material in at least one predetermined orientation, wherein the metallic material, subsequent to deformation, comprises a second thermal expansion coefficient, wherein the second thermal expansion coefficient is within a predetermined range, and wherein the thermal expansion is in at least one predetermined direction. In some embodiments, the metallic material comprises the second phase and is thermo-mechanically deformed to orient the grains in at least one direction.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Inventors: James Alan Monroe, Ibrahim Karaman, Raymundo Arroyave
  • Publication number: 20200140968
    Abstract: Systems and methods disclosed herein relate to the manufacture of metallic material with a thermal expansion coefficient in a predetermined range, comprising: deforming, a metallic material comprising a first phase and a first thermal expansion coefficient. In response to the deformation, at least some of the first phase is transformed into a second phase, wherein the second phase comprises martensite, and orienting the metallic material in at least one predetermined orientation, wherein the metallic material, subsequent to deformation, comprises a second thermal expansion coefficient, wherein the second thermal expansion coefficient is within a predetermined range, and wherein the thermal expansion is in at least one predetermined direction. In some embodiments, the metallic material comprises the second phase and is thermo-mechanically deformed to orient the grains in at least one direction.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 7, 2020
    Inventors: James Alan Monroe, Ibrahim Karaman, Raymundo Arroyave
  • Patent number: 10557182
    Abstract: Systems and methods disclosed herein relate to the manufacture of metallic material with a thermal expansion coefficient in a predetermined range, comprising: deforming, a metallic material comprising a first phase and a first thermal expansion coefficient. In response to the deformation, at least some of the first phase is transformed into a second phase, wherein the second phase comprises martensite, and orienting the metallic material in at least one predetermined orientation, wherein the metallic material, subsequent to deformation, comprises a second thermal expansion coefficient, wherein the second thermal expansion coefficient is within a predetermined range, and wherein the thermal expansion is in at least one predetermined direction. In some embodiments, the metallic material comprises the second phase and is thermo-mechanically deformed to orient the grains in at least one direction.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: February 11, 2020
    Inventors: James A. Monroe, Ibrahim Karaman, Raymundo Arroyave
  • Patent number: 10538835
    Abstract: Provided herein are variably flexible (i.e., variably stiff) metal alloys and methods of making the variably flexible (i.e., variably stiff) metal alloys. A variably flexible (i.e., variably stiff) metal alloy is a metal alloy that has areas of differing flexibility (i.e., stiffness, rigidity or elasticity) along a length of the metal alloy when the metal alloy is subjected to a load in use. Also provided herein are methods of making variably flexible (i.e., variably stiff) metal alloys and products including casting a metal alloy and selectively heat treating portions of the metal alloy to achieve predetermined stiffnesses in those portions.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: January 21, 2020
    Assignee: Adallo LLC
    Inventors: Ji Ma, Ibrahim Karaman, Eric Flickinger
  • Publication number: 20180347023
    Abstract: Provided herein are variably flexible (i.e., variably stiff) metal alloys and methods of making the variably flexible (i.e., variably stiff) metal alloys. A variably flexible (i.e., variably stiff) metal alloy is a metal alloy that has areas of differing flexibility (i.e., stiffness, rigidity or elasticity) along a length of the metal alloy when the metal alloy is subjected to a load in use. Also provided herein are methods of making variably flexible (i.e., variably stiff) metal alloys and products including casting a metal alloy and selectively heat treating portions of the metal alloy to achieve predetermined stiffnesses in those portions.
    Type: Application
    Filed: June 5, 2018
    Publication date: December 6, 2018
    Applicant: Adallo, LLC
    Inventors: Ji Ma, Ibrahim Karaman, Eric Flickinger
  • Publication number: 20180119241
    Abstract: Severe mechanical deformation in addition to thermal processing can be used to produce microstructural refinement in iron-cobalt-vanadium alloys. As an example, significant grain refinement through Equal Channel Angular Extrusion (ECAE), also known as Equal Channel Angular Pressing (ECAP), at high temperatures was demonstrated in bulk Hiperco soft magnetic alloy. The ECAE material exhibited high strength levels comparable to Hiperco sheet and the ductility was higher than heat treated conventional bar with large grain size. The increase in ductility was attributed to small grain size and the disordered phase that may co-exist with the ordered phase. In addition, the ECAP material also displays good magnetic properties, with relatively high magnetic saturation as shown in the B-H curve. The heat treatment after ECAP improves magnetic performance, with some tradeoff in mechanical properties.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 3, 2018
    Inventors: Donald F. Susan, Jeffrey Rodelas, Blythe Clark, Ibrahim Karaman, Taymaz Jozaghi
  • Publication number: 20170340777
    Abstract: Systems and methods discussed herein provide for fabricating orthopedic implants one or more shape-memory alloys including TiNi and TiNb and shape-setting the alloys to the geometry appropriate for the orthopedic implant. The shape-setting may include tuning the transformation temperature of the one or more alloys, and a single implant may comprise one or more alloys that may differ in composition, shape-setting process, or both.
    Type: Application
    Filed: November 13, 2015
    Publication date: November 30, 2017
    Applicant: The Texas A&M University System
    Inventors: Ji Ma, Mukund I. Gundanna, Ibrahim Karaman, Arun R. Srinivasa
  • Patent number: 9752219
    Abstract: Methods of manufacturing biocompatible, corrosion resistant, self-adaptive, shape-memory titanium-based alloys by using specific ranges of elements in the alloy. Subsequent to melting, the alloy may undergo heat treating, thermo-mechanically processing, and training. Subsequent to training, the alloy has an ultra-low elastic modulus and exhibits self-adaptive, superelastic behavior.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: September 5, 2017
    Assignee: THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Ji Ma, Ibrahim Karaman
  • Publication number: 20160348203
    Abstract: A controlled thermal coefficient product manufacturing system and method is disclosed. The disclosed product relates to the manufacture of metallic material product (MMP) having a thermal expansion coefficient (TEC) in a predetermined range. The disclosed system and method provides for a first material deformation (FMD) of the MMP that comprises at least some of a first material phase (FMP) wherein the FMP comprises martensite randomly oriented and a first thermal expansion coefficient (FTC). In response to the FMD at least some of the FMP is oriented in at least one predetermined orientation. Subsequent to deformation, the MMP comprises a second thermal expansion coefficient (STC) that is within a predetermined range and wherein the thermal expansion of the MMP is in at least one predetermined direction. The MMP may be comprised of a second material phase (SMP) that may or may not transform to the FMP in response to the FMD.
    Type: Application
    Filed: July 22, 2016
    Publication date: December 1, 2016
    Applicant: The Texas A&M Unversity System
    Inventors: James Allen Monroe, Ibrahim Karaman, Raymundo Arroyave
  • Publication number: 20160281198
    Abstract: Methods of manufacturing biocompatible, corrosion resistant, self-adaptive, shape-memory titanium-based alloys by using specific ranges of elements in the alloy. Subsequent to melting, the alloy may undergo heat treating, thermo-mechanically processing, and training. Subsequent to training, the alloy has an ultra-low elastic modulus and exhibits self-adaptive, superelastic behavior.
    Type: Application
    Filed: November 15, 2013
    Publication date: September 29, 2016
    Applicant: The Texas A&M University System
    Inventors: Ji Ma, Ibrahim Karaman