Patents by Inventor Ichiro Anjo

Ichiro Anjo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8222737
    Abstract: A BGA semiconductor device includes a semiconductor package and a mounting board mounting thereon the semiconductor package, wherein an array of signal electrodes of the semiconductor package and an array of signal electrodes of the mounting board are coupled together via signal bumps. The BGA semiconductor device also includes a dummy bump, which reinforces the bending strength of the BGA semiconductor device and is broken by a shearing force caused by thermal expansion to alleviate the stress for the signal bumps.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: July 17, 2012
    Assignee: Elpida Memory, Inc.
    Inventors: Yuji Watanabe, Hisashi Tanie, Koji Hosokawa, Mitsuaki Katagiri, Ichiro Anjo
  • Patent number: 8164186
    Abstract: A BGA semiconductor device includes a semiconductor package and a mounting board mounting thereon the semiconductor package, wherein an array of signal electrodes of the semiconductor package and an array of signal electrodes of the mounting board are coupled together via signal bumps. The BGA semiconductor device also includes a dummy bump, which reinforces the bending strength of the BGA semiconductor device and is broken by a shearing force caused by thermal expansion to alleviate the stress for the signal bumps.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: April 24, 2012
    Assignee: Elpida Memory, Inc.
    Inventors: Yuji Watanabe, Hisashi Tanie, Koji Hosokawa, Mitsuaki Katagiri, Ichiro Anjo
  • Publication number: 20100295179
    Abstract: A BGA semiconductor device includes a semiconductor package and a mounting board mounting thereon the semiconductor package, wherein an array of signal electrodes of the semiconductor package and an array of signal electrodes of the mounting board are coupled together via signal bumps. The BGA semiconductor device also includes a dummy bump, which reinforces the bending strength of the BGA semiconductor device and is broken by a shearing force caused by thermal expansion to alleviate the stress for the signal bumps.
    Type: Application
    Filed: July 29, 2010
    Publication date: November 25, 2010
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Yuji Watanabe, Hisashi Tanie, Koji Hosokawa, Mitsuaki Katagiri, Ichiro Anjo
  • Patent number: 7812439
    Abstract: A semiconductor apparatus includes a semiconductor chip, a wired board, a plurality of bump electrodes, a plurality of external terminals, and insulating material. The semiconductor chip includes a plurality of electrode pads arranged in a central area on one surface. The wired board is arranged as facing one surface of the semiconductor chip, and includes a wiring. The bump electrode is provided between surfaces at which the semiconductor chip and the wired board face each other, and electrically connects the electrode pad and the wiring. The external terminal corresponds to a plurality of bump electrodes, and is mounted on the wired board. The insulating material is provided between the semiconductor chip and the wired board, and covers at least a connection part between the bump electrode and the wiring.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: October 12, 2010
    Assignee: Elpida Memory, Inc.
    Inventors: Mitsuhisa Watanabe, Ichiro Anjo
  • Patent number: 7546506
    Abstract: The present invention relates to a DRAM stacked packages, a DIMM, a method for testing them, and a semiconductor manufacturing method. According to the present invention, there is provided a DRAM stacked package comprising: a plurality of stacked DRAMs; external terminals to which test equipment is connected, said external terminals being used to input/output at least address, command, and data; and an interface chip provided between said plurality of stacked DRAMs and said external terminals. The plurality of DRAMs and the interface chip are implemented on a package. The interface chip comprises: a test circuit including: an algorithmic pattern generator for generating a test pattern used to test the plurality of DRAMs; applying circuits for applying said generated test pattern to the plurality of DRAMs; and a comparator for comparing each response signal received from the plurality of DRAMs with an expected value for judgment.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: June 9, 2009
    Assignees: Hitachi, Ltd., Elpida Memory, Inc.
    Inventors: Yuji Sonoda, Shuji Kikuchi, Katsunori Hirano, Ichiro Anjo, Mitsuaki Katagiri
  • Publication number: 20090014874
    Abstract: A semiconductor apparatus includes a semiconductor chip, a wired board, a plurality of bump electrodes, a plurality of external terminals, and insulating material. The semiconductor chip includes a plurality of electrode pads arranged in a central area on one surface. The wired board is arranged as facing one surface of the semiconductor chip, and includes a wiring. The bump electrode is provided between surfaces at which the semiconductor chip and the wired board face each other, and electrically connects the electrode pad and the wiring. The external terminal corresponds to a plurality of bump electrodes, and is mounted on the wired board. The insulating material is provided between the semiconductor chip and the wired board, and covers at least a connection part between the bump electrode and the wiring.
    Type: Application
    Filed: July 8, 2008
    Publication date: January 15, 2009
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Mitsuhisa WATANABE, Ichiro ANJO
  • Patent number: 7466577
    Abstract: A semiconductor storage employs a base substrate (101) having a command/address external terminal group (CA), a data input/output external terminal group (DQ), and a single chip select external terminal (CS), and also comprises a plurality of memory chips (110) to (113) mounted on a base substrate (101), each of which can individually carry out read and write operations. The terminals (CA), (DQ), and (CS) are connected to an interface chip (120). The interface chip (120) has a chip select signal generation circuit that can individually activate a plurality of memory chips (110) to (113) on the basis of an address signal fed by way of the terminal (CA) and on the basis of a chip select signal fed by way of the terminal (CS).
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: December 16, 2008
    Assignees: Hitachi, Ltd., Intellectual Property Group, Elpida Memory, Inc.
    Inventors: Tomonori Sekiguchi, Hideki Osaka, Tatemi Ido, Osamu Nagashima, Mitsuaki Katagiri, Ichiro Anjo
  • Patent number: 7378333
    Abstract: The present invention is a semiconductor device having the semiconductor element obtained by cutting a semiconductor wafer with the electrode pad formed on one side along a scribe line, a semiconductor element protective layer on the semiconductor element which has a opening on the pad, a stress cushioning layer on the layer which has the opening on the pad, a lead wire portion reaching the layer from the electrode pad via the openings, external electrodes on the lead wire portion, and the conductor protective layer on the layers, the layer and the conductor protective layer forming the respective end faces on the end surface of the semiconductor element inside the scribe line and exposing the range from the end face of the end surface to the inside of the scribe line.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: May 27, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Toshiya Satoh, Masahiko Ogino, Tadanori Segawa, Yoshihide Yamaguchi, Hiroyuki Tenmei, Atsushi Kazama, Ichiro Anjo, Asao Nishimura
  • Publication number: 20060239055
    Abstract: The present invention relates to a DRAM stacked packages, a DIMM, a method for testing them, and a semiconductor manufacturing method. According to the present invention, there is provided a DRAM stacked package comprising: a plurality of stacked DRAMs; external terminals to which test equipment is connected, said external terminals being used to input/output at least address, command, and data; and an interface chip provided between said plurality of stacked DRAMs and said external terminals. The plurality of DRAMs and the interface chip are implemented on a package. The interface chip comprises: a test circuit including: an algorithmic pattern generator for generating a test pattern used to test the plurality of DRAMs; applying circuits for applying said generated test pattern to the plurality of DRAMs; and a comparator for comparing each response signal received from the plurality of DRAMs with an expected value for judgment.
    Type: Application
    Filed: March 20, 2006
    Publication date: October 26, 2006
    Inventors: Yuji Sonoda, Shuji Kikuchi, Katsunori Hirano, Ichiro Anjo, Mitsuaki Katagiri
  • Publication number: 20060233012
    Abstract: A semiconductor storage employs a base substrate (101) having a command/address external terminal group (CA), a data input/output external terminal group (DQ), and a single chip select external terminal (CS), and also comprises a plurality of memory chips (110) to (113) mounted on a base substrate (101), each of which can individually carry out read and write operations. The terminals (CA), (DQ), and (CS) are connected to an interface chip (120). The interface chip (120) has a chip select signal generation circuit that can individually activate a plurality of memory chips (110) to (113) on the basis of an address signal fed by way of the terminal (CA) and on the basis of a chip select signal fed by way of the terminal (CS).
    Type: Application
    Filed: March 30, 2006
    Publication date: October 19, 2006
    Inventors: Tomonori Sekiguchi, Hideki Osaka, Tatemi Ido, Osamu Nagashima, Mitsuaki Katagiri, Ichiro Anjo
  • Patent number: 7119428
    Abstract: A semiconductor device capable of reducing a temperature increase during operation thereof is provided. In the semiconductor device, an interface chip is stacked on a plurality of stacked semiconductor elements. Both an “Si” interposer and a resin interposer are arranged under the plural semiconductor elements. The Si interposer is arranged between the resin interposer and the plural semiconductor elements. The Si interposer owns a thickness which is thicker than a thickness of a semiconductor element, and also has a linear expansion coefficient which is smaller than a linear expansion coefficient of the resin interposer, and further, is larger than, or equal to linear expansion coefficients of the plural semiconductor elements.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: October 10, 2006
    Assignees: Hitachi, Ltd., Elpida Memory, Inc.
    Inventors: Hisashi Tanie, Nae Hisano, Hiroyuki Ohta, Hiroaki Ikeda, Ichiro Anjo, Mitsuaki Katagiri, Yuji Watanabe
  • Patent number: 7057283
    Abstract: A semiconductor apparatus in which flip chip bonding is enabled without any underfill, and which comprises a semiconductor device, an electrically insulating layer formed on the semiconductor device by mask-printing an electrically insulating material containing particles, and an external connection terminal formed on the electrically insulating layer and electrically connected with an electrode of the semiconductor device. The electrically insulating layer is formed with a thickness so as to provide ?-ray shielding of the semiconductor device.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: June 6, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Kosuke Inoue, Hiroyuki Tenmei, Yoshihide Yamaguchi, Noriyuki Oroku, Hiroshi Hozoji, Shigeharu Tsunoda, Madoka Minagawa, Naoya Kanda, Ichiro Anjo, Asao Nishimura, Akira Yajima, Kenji Ujiie
  • Patent number: 6989600
    Abstract: CMOS logic LSI comprises, as a part thereof, n-channel MISFET's (Qn), p-channel MISFET's (Qp) and a first-layer wiring (11) to a third-layer (13) formed on a main surface of a silicon substrate (1), and as another part, a fourth-layer wiring (14) to a seventh-layer wiring (17) formed on a main surface of a glass substrate (30) different from the silicon substrate (1). The main surface of the silicon substrate (1) and the main surface of the glass substrate (30) are arranged in face-to-face relation with each other, and a plurality of microbumps (20A) formed at the uppermost portion of the silicon substrate (1) and a plurality of microbumps (20B) formed at the uppermost portion of the glass substrate (30) are electrically connected, thereby constituting the CMOS logic LSI as a whole.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: January 24, 2006
    Assignee: Renesas Technology Corporation
    Inventors: Masaharu Kubo, Ichiro Anjo, Akira Nagai, Osamu Kubo, Hiromi Abe, Hitoshi Akamine
  • Publication number: 20050245061
    Abstract: The present invention is a semiconductor device having the semiconductor element obtained by cutting a semiconductor wafer with the electrode pad formed on one side along a scribe line, a semiconductor element protective layer on the semiconductor element which has a opening on the pad, a stress cushioning layer on the layer which has the opening on the pad, a lead wire portion reaching the layer from the electrode pad via the openings, external electrodes on the lead wire portion, and the conductor protective layer on the layers, the layer and the conductor protective layer forming the respective end faces on the end surface of the semiconductor element inside the scribe line and exposing the range from the end face of the end surface to the inside of the scribe line.
    Type: Application
    Filed: June 29, 2005
    Publication date: November 3, 2005
    Inventors: Toshiya Satoh, Masahiko Ogino, Tadanori Segawa, Yoshihide Yamaguchi, Hiroyuki Tenmei, Atsushi Kazama, Ichiro Anjo, Asao Nishimura
  • Publication number: 20050230824
    Abstract: A BGA semiconductor device includes a semiconductor package and a mounting board mounting thereon the semiconductor package, wherein an array of signal electrodes of the semiconductor package and an array of signal electrodes of the mounting board are coupled together via signal bumps. The BGA semiconductor device also includes a dummy bump, which reinforces the bending strength of the BGA semiconductor device and is broken by a shearing force caused by thermal expansion to alleviate the stress for the signal bumps.
    Type: Application
    Filed: April 14, 2005
    Publication date: October 20, 2005
    Inventors: Yuji Watanabe, Hisashi Tanie, Koji Hosokawa, Mitsuaki Katagiri, Ichiro Anjo
  • Patent number: 6949416
    Abstract: Disclosed is a technique capable of enhancing the degree of freedom in the layout of a rerouting layer in a wafer level CSP in which defect repairing is performed by cutting a fuse. More specifically, after the defect repairing is performed by irradiating a laser beam to a fuse, an organic passivation layer (photo-sensitive polyimide layer) is filled in a fuse opening. Thereafter, a rerouting layer, a bump land, an uppermost wiring layer, and a solder bump are formed on the organic passivation layer. In the following steps of the defect repairing, the baking process to cure an elastomer layer and the uppermost protection layer is conducted at a temperature below 260° C. in order to prevent the variance of the refresh times of memory cells.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: September 27, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Toshio Miyamoto, Ichiro Anjo, Asao Nishimura, Yoshihide Yamaguchi
  • Patent number: 6946723
    Abstract: A semiconductor device having a semiconductor element is obtained by cutting a semiconductor wafer, having an electrode pad formed on one side thereof, along a scribe line. The semiconductor device has a semiconductor element protective layer on the semiconductor element so as to form an opening above the pad, a stress cushioning layer on the layer so as to form an opening on the pad, a lead wire portion reaching the layer from the electrode pad via the openings, external electrodes on the lead wire portion, and a conductor protective layer on the layer. The layer, the layer, and the conductor protective layer form respective end faces on the end surface of the semiconductor element inside the scribe line and expose a surface of the semiconductor element from the end face of the end surface to a point inside of the scribe line, thereby to expose the scribe line.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: September 20, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Toshiya Satoh, Masahiko Ogino, Tadanori Segawa, Yoshihide Yamaguchi, Hiroyuki Tenmei, Atsushi Kazama, Ichiro Anjo, Asao Nishimura
  • Patent number: 6946327
    Abstract: A semiconductor integrated circuit device includes a semiconductor substrate, a circuit element formed on one major surface of the semiconductor substrate and constituting an integrated circuit having a plurality of functions or a plurality of characteristics, an internal connection terminal, connected to the integrated circuit, for selecting one of the plurality of functions or one of the characteristics in the integrated circuit, an insulating layer covering the internal connection terminal such that the internal connection terminal is selectively exposed, and an external connection terminal arranged on the insulating layer. One of the plurality of functions or one of the plurality of characteristics is selected by a connection state between the internal connection terminal and the external connection terminal.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: September 20, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Toshio Miyamoto, Ichiro Anjo, Asao Nishimura, Mitsuaki Katagiri, Yuji Shirai, Yoshihide Yamaguchi
  • Patent number: 6940162
    Abstract: In a multi chip module of a structure wherein a plurality of bare or packaged semiconductor chips are mounted on a single wiring board and upper surfaces of the semiconductor chips are covered with a single heat spread plate, the whole space around the semiconductor chips thus sandwiched between the wiring board and the heat spread plate is filled with resin. By so doing, the semiconductor chips are interconnected through the resin, so that even if a stress is exerted on any of the chips, it is dispersed and therefore it is possible to diminish the occurrence of cracks in the chips and the heat spread plate caused by stress concentration. Besides, since the semiconductor chips and the heat spread plate are bonded together with resin, even if there are variations in size of the chips, both can be bonded easily. Further, the bonding of all the chips and the heat spread plate can be done in a single process.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: September 6, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Shuji Eguchi, Akira Nagai, Haruo Akahoshi, Takumi Ueno, Toshiya Satoh, Masahiko Ogino, Asao Nishimura, Ichiro Anjo, Hideki Tanaka
  • Patent number: 6930388
    Abstract: A semiconductor device is provided which enables a flip chip connection without use of underfill. The semiconductor device includes a semiconductor element having circuit electrodes and a circuit surface coated with a protecting film. A stress relaxation layer is provided by coating a cured thermoplastic resin onto the protecting film of the circuit surface in a manner which leaves the circuit electrodes exposed and curing it and having an inclination in the edge portion thereof. A wiring layer with wirings is connected to each of the circuit electrodes and disposed so as to make an electrical connection from the circuit electrodes, via the edge portion of the stress relaxation layer, and to a desired portion on the surface of the stress relaxation layer. A protecting film is provided thereon, and an external connection terminal is also provided.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: August 16, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Yoshihide Yamaguchi, Hiroyuki Tenmei, Kosuke Inoue, Noriyuki Oroku, Hiroshi Hozoji, Shigeharu Tsunoda, Naoya Kanda, Madoka Minagawa, Ichiro Anjo, Asao Nishimura, Kenji Ujiie, Akira Yajima