Patents by Inventor Ichiro Oodake

Ichiro Oodake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8842388
    Abstract: Embodiments of the present invention provide a perpendicular magnetic recording head including a coil having small resistance. According to one embodiment, a nonmagnetic insulating layer formed on a main magnetic pole and a magnetic yoke are etched to form a recessed portion. The thickness of a conductive layer is increased by the depth of the recessed portion in a process for forming the conductive layer of the upper coil on the recessed portion to reduce resistance of the coil. Simultaneously with the formation of the recessed portion, a part of a second layer of a connection tab is removed. Simultaneously with the formation of the conductive layer of the upper coil, a space in which the part of the second layer of the connection tab is removed is filled with the same material as that of the conductive layer to further reduce the resistance of the entire coil.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: September 23, 2014
    Assignee: HGST Netherlands BV
    Inventors: Atsushi Kato, Ichiro Oodake, Gen Oikawa, Masahiko Soga
  • Patent number: 8767345
    Abstract: A thermally actuated head for magnetic head for magnetic data recording having a contact sensor for detecting contact between the head and a magnetic disk. The contact sensor includes a thermal sensor film and first and second leads, wherein the leads extend at least as far from the ABS as the thermal sensor film. More preferably the leads extend slightly further from the ABS than the sensor film so that contact between the magnetic disk and the contact sensor occurs at the leads rather than at the sensor film. The sensor film can be constructed of NiFe, preferably having 30-70 atomic percent Ni or more preferably 40-60 atomic percent Ni or most preferably 40-50 atomic percent Ni. The leads are preferably constructed of one or more of Ru, Rh or Ta or an alloy whose primary constituents are Ru, Rh or Ta.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: July 1, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Hideaki Tanaka, Kiyonori Shiraki, Atsushi Kato, Ichiro Oodake, Hiroshi Agari
  • Patent number: 8760787
    Abstract: In one embodiment, a method includes forming a conducting material above an insulating film, applying a mask to portions of the conducting material in a shape of a TFC structure, removing exposed portions of the conducting material to form the TFC structure, depositing an insulating film above the TFC structure, and planarizing the insulating film to form a planar upper surface of the insulating film. In another embodiment, a magnetic head includes a TFC structure positioned between insulating films and a magnetic element positioned above the TFC structure, the TFC structure configured for providing localized thermal protrusion of the magnetic head on a media facing surface thereof, wherein an upper surface of an upper of the insulating films is planar, the magnetic element includes at least one of a main magnetic pole and a read sensor, and the TFC structure is configured for providing thermal protrusion of the magnetic element.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: June 24, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Takashi Wagatsuma, Yukimasa Okada, Ichiro Oodake, Atsushi Kato
  • Patent number: 8717711
    Abstract: According to one embodiment, a magnetic data system includes a magnetic disk medium, a magnetic head having a writer element and/or a reader element, an exothermic resistor element for thermal fly-height control (TFC), a contact detection sensor having a resistor element and at least one contact detection electrode, and an insulating film on a medium facing side of the magnetic head to protect the contact detection sensor, the insulating film having a thickness greater than the contact detection electrode, a drive mechanism for passing the magnetic disk medium over the magnetic head, and a controller electrically coupled to the magnetic head for controlling operation of the magnetic head, wherein the controller adjusts magnetic spacing between the magnetic head and the magnetic disk medium via thermal distortion of the exothermic resistor element. The contact detection sensor may be used as a second TFC resistor element.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: May 6, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Atsushi Kato, Hideaki Tanaka, Ichiro Oodake, Takao Yonekawa
  • Publication number: 20130141813
    Abstract: In one embodiment, a method includes forming a conducting material above an insulating film, applying a mask to portions of the conducting material in a shape of a TFC structure, removing exposed portions of the conducting material to form the TFC structure, depositing an insulating film above the TFC structure, and planarizing the insulating film to form a planar upper surface of the insulating film. In another embodiment, a magnetic head includes a TFC structure positioned between insulating films and a magnetic element positioned above the TFC structure, the TFC structure configured for providing localized thermal protrusion of the magnetic head on a media facing surface thereof, wherein an upper surface of an upper of the insulating films is planar, the magnetic element includes at least one of a main magnetic pole and a read sensor, and the TFC structure is configured for providing thermal protrusion of the magnetic element.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 6, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Takashi Wagatsuma, Yukimasa Okada, Ichiro Oodake, Atsushi Kato
  • Publication number: 20130077189
    Abstract: According to one embodiment, a magnetic data system includes a magnetic disk medium, a magnetic head having a writer element and/or a reader element, an exothermic resistor element for thermal fly-height control (TFC), a contact detection sensor having a resistor element and at least one contact detection electrode, and an insulating film on a medium facing side of the magnetic head to protect the contact detection sensor, the insulating film having a thickness greater than the contact detection electrode, a drive mechanism for passing the magnetic disk medium over the magnetic head, and a controller electrically coupled to the magnetic head for controlling operation of the magnetic head, wherein the controller adjusts magnetic spacing between the magnetic head and the magnetic disk medium via thermal distortion of the exothermic resistor element. The contact detection sensor may be used as a second TFC resistor element.
    Type: Application
    Filed: September 28, 2011
    Publication date: March 28, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Atsushi Kato, Hideaki Tanaka, Ichiro Oodake, Takao Yonekawa
  • Publication number: 20120262816
    Abstract: A thermally actuated head for magnetic head for magnetic data recording having a contact sensor for detecting contact between the head and a magnetic disk. The contact sensor includes a thermal sensor film and first and second leads, wherein the leads extend at least as far from the ABS as the thermal sensor film. More preferably the leads extend slightly further from the ABS than the sensor film so that contact between the magnetic disk and the contact sensor occurs at the leads rather than at the sensor film. The sensor film can be constructed of NiFe, preferably having 30-70 atomic percent Ni or more preferably 40-60 atomic percent Ni or most preferably 40-50 atomic percent Ni. The leads are preferably constructed of one or more of Ru, Rh or Ta or an alloy whose primary constituents are Ru, Rh or Ta.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 18, 2012
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hideaki Tanaka, Kiyonori Shiraki, Atsushi Kato, Ichiro Oodake, Hiroshi Agari
  • Patent number: 7882617
    Abstract: The main magnetic pole piece of a magnetic head for perpendicular magnetic recording preferably has an inverted trapezoidal shape in order to maintain a sufficient recording magnetic field. Embodiments of the present invention enhance the covering power of the protective film around the main magnetic pole piece of the magnetic head and thereby ensure reliability even when the main magnetic pole piece has such a shape. In one embodiment, the protective film for protecting the main magnetic pole piece is formed by a sputtering apparatus while applying a bias, or it is formed by a carousel type sputtering apparatus or the chemical vapor deposition (CVD) technique.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: February 8, 2011
    Inventors: Atsushi Kato, Isao Nunokawa, Tomohiro Okada, Ichiro Oodake
  • Patent number: 7681303
    Abstract: Embodiments of the present invention provide a method of manufacturing a magnetic head slider, the method being adapted so that throat height of a main magnetic pole piece of a perpendicular recording magnetic head can be controlled with high accuracy. According to one embodiment, a first Electrical Lapping Guide element (ELG) is disposed on the same layer as a plated underlayer of a shield of one write head in a row bar, and other ELGs are disposed on the same layer as that of a main magnetic pole piece of another write head. Front end positions (Tops) are detected from changes in resistance values of the other ELGs and an ending position of lapping is calculated. Since the front end positions (Tops) of the other ELGs are accurate, it is possible to assign a correlation to throat height “Th” of the main magnetic pole piece and the resistance value of the first ELG by detecting this resistance value existing when the front end positions (Tops) are detected.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: March 23, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Akira Kondo, Koji Tanaka, Kimitoshi Etoh, Ichiro Oodake
  • Publication number: 20090213496
    Abstract: Embodiments of the present invention provide a perpendicular magnetic recording head including a coil having small resistance. According to one embodiment, a nonmagnetic insulating layer formed on a main magnetic pole and a magnetic yoke are etched to form a recessed portion. The thickness of a conductive layer is increased by the depth of the recessed portion in a process for forming the conductive layer of the upper coil on the recessed portion to reduce resistance of the coil. Simultaneously with the formation of the recessed portion, a part of a second layer of a connection tab is removed. Simultaneously with the formation of the conductive layer of the upper coil, a space in which the part of the second layer of the connection tab is removed is filled with the same material as that of the conductive layer to further reduce the resistance of the entire coil.
    Type: Application
    Filed: February 25, 2009
    Publication date: August 27, 2009
    Inventors: Atsushi Kato, Ichiro Oodake, Gen Oikawa, Masahiko Soga
  • Patent number: 7515380
    Abstract: At least one of lower and upper magnetic cores is composed of magnetic films each of which contains two or more elements of Co, Ni, and Fe, which are formed by electroplating in a plating bath with pH 2 or less, and which have a saturation magnetic flux density of 23,000 gauss or more.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: April 7, 2009
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Kazue Kudo, Gen Oikawa, Tetsuya Okai, Ichiro Oodake, Hiromi Shiina
  • Publication number: 20080072418
    Abstract: Embodiments of the present invention provide a method of manufacturing a magnetic head slider, the method being adapted so that throat height of a main magnetic pole piece of a perpendicular recording magnetic head can be controlled with high accuracy. According to one embodiment, a first Electrical Lapping Guide element (ELG) is disposed on the same layer as a plated underlayer of a shield of one write head in a row bar, and other ELGs are disposed on the same layer as that of a main magnetic pole piece of another write head. Front end positions (Tops) are detected from changes in resistance values of the other ELGs and an ending position of lapping is calculated. Since the front end positions (Tops) of the other ELGs are accurate, it is possible to assign a correlation to throat height “Th” of the main magnetic pole piece and the resistance value of the first ELG by detecting this resistance value existing when the front end positions (Tops) are detected.
    Type: Application
    Filed: August 30, 2007
    Publication date: March 27, 2008
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Akira Kondo, Koji Tanaka, Kimitoshi Etoh, Ichiro Oodake
  • Patent number: 7333301
    Abstract: A thin-film magnetic head having little temperature rise in the element, good heat dissipation and a short magnetic path length (narrow coil pitch) and manufacturing method for same is provided. To form the coil of the thin-film magnetic head, a lower coil is first formed and after forming alumina and an inorganic compound containing alumina, a trench is formed for the upper coil by reactive ion etching. The lower coil allows uniform etching at this time and functions as a film to prevent loading effects occurring during reactive ion etching. This trench is then plated in copper and chemical mechanical planarization performed to form the upper layer coil as the dual-layer coil of the present invention. Heat from the coil is efficiently radiated towards the substrate by alumina and an inorganic compound containing alumina with good heat propagation.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: February 19, 2008
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Kimitoshi Etoh, Nobuo Yoshida, Moriaki Fuyama, Makoto Morijiri, Kenichi Meguro, Ichiro Oodake, Kazue Kudo, Yohji Maruyama, Katsuro Watanabe
  • Patent number: 7310203
    Abstract: There is provided a thin film magnetic head, with letting a distance of a portion, where a width of a track portion in an upper magnetic pole changes, from a flying plane from a medium be Ly, and letting a distance of a portion, where a distance between right and left of a surface portion in a lower magnetic pole in a track width direction is wider than the width of the upper magnetic pole in the track width direction, from the flying plane from a medium be Tp, by creating a thin film magnetic head that is equipped with a recording head that has a relation of Tp?Ly, it becomes possible to reduce a needless leakage magnetic field in the track width direction with securing magnetic field strength.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: December 18, 2007
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Nobuo Yoshida, Ichiro Oodake, Moriaki Fuyama, Kazue Kudo, Kimitoshi Etoh, Shigekazu Ohtomo, Hiroshi Fukui
  • Patent number: 7267757
    Abstract: At least one of lower and upper magnetic cores is composed of magnetic films each of which contains two or more elements of Co, Ni, and Fe, which are formed by electroplating in a plating bath with pH 2 or less, and which have a saturation magnetic flux density of 23,000 gauss or more.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: September 11, 2007
    Assignee: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Kazue Kudo, Gen Oikawa, Tetsuya Okai, Ichiro Oodake, Hiromi Shiina
  • Publication number: 20070177299
    Abstract: At least one of lower and upper magnetic cores is composed of magnetic films each of which contains two or more elements of Co, Ni, and Fe, which are formed by electroplating in a plating bath with pH 2 or less, and which have a saturation magnetic flux density of 23,000 gauss or more.
    Type: Application
    Filed: March 13, 2007
    Publication date: August 2, 2007
    Applicant: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Kazue Kudo, Gen Oikawa, Tetsuya Okai, Ichiro Oodake, Hiromi Shiina
  • Publication number: 20060090329
    Abstract: The main magnetic pole piece of a magnetic head for perpendicular magnetic recording preferably has an inverted trapezoidal shape in order to maintain a sufficient recording magnetic field. Embodiments of the present invention enhance the covering power of the protective film around the main magnetic pole piece of the magnetic head and thereby ensure reliability even when the main magnetic pole piece has such a shape. In one embodiment, the protective film for protecting the main magnetic pole piece is formed by a sputtering apparatus while applying a bias, or it is formed by a carousel type sputtering apparatus or the chemical vapor deposition (CVD) technique.
    Type: Application
    Filed: October 25, 2005
    Publication date: May 4, 2006
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Atsushi Kato, Isao Nunokawa, Tomohiro Okada, Ichiro Oodake
  • Publication number: 20040257711
    Abstract: The influence of ion milling is extremely suppressed even in a composite magnetic thin film head comprising a magnetoresistive thin film head used by passing an electric current perpendicularly to a multilayer structure. The number of ion milling steps after the formation of a magnetoresistive thin film head is reduced as much as possible, whereby the influence of electrostatic charging arising from an ion milling apparatus is obviated. In specific embodiments, an inductive magnetic thin film head is first formed on a substrate, and thereafter a magnetoresistive thin film head is formed thereon. The magneto resistive thin film head includes a magneto resistive film having a multilayer structure and configured to be used by passing a detection current perpendicularly to the multilayer structure. In one embodiment, the inductive magnetic thin film head has a structure in which a coil is buried at the same horizontal position as a lower pole.
    Type: Application
    Filed: June 18, 2004
    Publication date: December 23, 2004
    Applicant: Hitachi Global Storage Technologies, Japan , Ltd.
    Inventors: Masahiro Ushiyama, Ichiro Oodake, Katsuro Watanabe, Taku Shintani
  • Publication number: 20040240121
    Abstract: A thin-film magnetic head having little temperature rise in the element, good heat dissipation and a short magnetic path length (narrow coil pitch) and manufacturing method for same is provided. To form the coil of the thin-film magnetic head, a lower coil is first formed and after forming alumina and an inorganic compound containing alumina, a trench is formed for the upper coil by reactive ion etching. The lower coil allows uniform etching at this time and functions as a film to prevent loading effects occurring during reactive ion etching. This trench is then plated in copper and chemical mechanical planarization performed to form the upper layer coil as the dual-layer coil of the present invention. Heat from the coil is efficiently radiated towards the substrate by alumina and an inorganic compound containing alumina with good heat propagation.
    Type: Application
    Filed: August 29, 2003
    Publication date: December 2, 2004
    Inventors: Kimitoshi Etoh, Nobuo Yoshida, Moriaki Fuyama, Makoto Morijiri, Kenichi Meguro, Ichiro Oodake, Kazue Kudo, Yohji Maruyama, Katsuro Watanabe
  • Publication number: 20040101712
    Abstract: At least one of lower and upper magnetic cores is composed of magnetic films each of which contains two or more elements of Co, Ni, and Fe, which are formed by electroplating in a plating bath with pH 2 or less, and which have a saturation magnetic flux density of 23,000 gauss or more.
    Type: Application
    Filed: September 18, 2003
    Publication date: May 27, 2004
    Applicant: Hitachi Global Storage Technologies Japan, Ltd.
    Inventors: Kazue Kudo, Gen Oikawa, Tetsuya Okai, Ichiro Oodake, Hiromi Shiina