Patents by Inventor Ichiro Seto

Ichiro Seto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11719791
    Abstract: A distance measuring device includes a calculating section that calculates, based on phase information acquired by a first device and a second device, at least one of which is movable, a distance between the first device and the second device. The first device includes a first transceiver that transmits three or more first carrier signals and receives three or more second carrier signals using an output of a first reference signal source. The second device includes a second transceiver that transmits the three or more second carrier signals and receives the three or more first carrier signals using an output of a second reference signal source. The calculating section calculates the distance based on a phase detection result obtained by reception of the first and second carrier signals and corrects the calculated distance based on information concerning an amplitude ratio of the first carrier signals received by the second transceiver.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: August 8, 2023
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yutaka Shimizu, Shoji Ootaka, Ichiro Seto, Katsuya Nonin
  • Publication number: 20210333376
    Abstract: A distance measuring device includes a calculating section that calculates, based on phase information acquired by a first device and a second device, at least one of which is movable, a distance between the first device and the second device. The first device includes a first transceiver that transmits three or more first carrier signals and receives three or more second carrier signals using an output of a first reference signal source. The second device includes a second transceiver that transmits the three or more second carrier signals and receives the three or more first carrier signals using an output of a second reference signal source. The calculating section calculates the distance based on a phase detection result obtained by reception of the first and second carrier signals and corrects the calculated distance based on information concerning an amplitude ratio of the first carrier signals received by the second transceiver.
    Type: Application
    Filed: May 26, 2021
    Publication date: October 28, 2021
    Inventors: Yutaka Shimizu, Shoji Ootaka, Ichiro Seto, Katsuya Nonin
  • Patent number: 11047961
    Abstract: A distance measuring device includes a calculating section that calculates, based on phase information acquired by a first device and a second device, at least one of which is movable, a distance between the first device and the second device. The first device includes a first transceiver that transmits three or more first carrier signals and receives three or more second carrier signals using an output of a first reference signal source. The second device includes a second transceiver that transmits the three or more second carrier signals and receives the three or more first carrier signals using an output of a second reference signal source. The calculating section calculates the distance based on a phase detection result obtained by reception of the first and second carrier signals and corrects the calculated distance based on information concerning an amplitude ratio of the first carrier signals received by the second transceiver.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: June 29, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tutaka Shimizu, Shoji Ootaka, Ichiro Seto, Katsuya Nonin
  • Publication number: 20210181322
    Abstract: A distance measuring device includes a calculating section configured to calculate, based on phase information acquired by a first device and a second device, at least one of which is movable, a distance between the first device and the second device. The first device includes a first reference signal source and a first transceiver configured to transmit two or more first carrier signals and receives two or more second carrier signals using an output of the first reference signal source. The second device includes a second reference signal source configured to operate independently from the first reference signal source and a second transceiver configured to transmit the second carrier signals and receives the first carrier signals using an output of the second reference signal source. The calculating section calculates the distance based on a phase detection result obtained by reception of the first and second carrier signals.
    Type: Application
    Filed: February 24, 2021
    Publication date: June 17, 2021
    Inventors: Shoji Ootaka, Yutaka Shimizu, Ichiro Seto, Yoshiharu Nito, Masaki Nishikawa, Takayuki Kato, Shigeyasu Iwata, Katsuya Nonin
  • Patent number: 10976419
    Abstract: A distance measuring device includes a calculating section configured to calculate, based on phase information acquired by a first device and a second device, at least one of which is movable, a distance between the first device and the second device. The first device includes a first reference signal source and a first transceiver configured to transmit two or more first carrier signals and receives two or more second carrier signals using an output of the first reference signal source. The second device includes a second reference signal source configured to operate independently from the first reference signal source and a second transceiver configured to transmit the second carrier signals and receives the first carrier signals using an output of the second reference signal source. The calculating section calculates the distance based on a phase detection result obtained by reception of the first and second carrier signals.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: April 13, 2021
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shoji Ootaka, Yutaka Shimizu, Ichiro Seto, Yoshiharu Nito, Masaki Nishikawa, Takayuki Kato, Shigeyasu Iwata, Katsuya Nonin
  • Publication number: 20200284888
    Abstract: A distance measuring device includes a calculating section that calculates, based on phase information acquired by a first device and a second device, at least one of which is movable, a distance between the first device and the second device. The first device includes a first transceiver that transmits three or more first carrier signals and receives three or more second carrier signals using an output of a first reference signal source. The second device includes a second transceiver that transmits the three or more second carrier signals and receives the three or more first carrier signals using an output of a second reference signal source. The calculating section calculates the distance based on a phase detection result obtained by reception of the first and second carrier signals and corrects the calculated distance based on information concerning an amplitude ratio of the first carrier signals received by the second transceiver.
    Type: Application
    Filed: May 26, 2020
    Publication date: September 10, 2020
    Inventors: Yutaka Shimizu, Shoji Ootaka, Ichiro Seto, Katsuya Nonin
  • Patent number: 10728081
    Abstract: A computer-implemented method of estimating IQ imbalance in a communication system including a transmitter and a receiver. The method includes: defining a system model in which a transmitted signal is affected by TX IQ imbalance, carrier frequency offset (CFO) and RX IQ imbalance; controlling a local oscillator at the transmitter to introduce a known carrier frequency offset (CFO) during a calibration; and estimating unknown parameters in the system model using a pre-defined training sequence to determine the TX IQ imbalance and the RX IQ imbalance.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: July 28, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Magnus Stig Torsten Sandell, Evgeny Tsimbalo, Ichiro Seto
  • Patent number: 10712435
    Abstract: A distance measuring device includes a calculating section that calculates, based on phase information acquired by a first device and a second device, at least one of which is movable, a distance between the first device and the second device. The first device includes a first transceiver that transmits three or more first carrier signals and receives three or more second carrier signals using an output of a first reference signal source. The second device includes a second transceiver that transmits the three or more second carrier signals and receives the three or more first carrier signals using an output of a second reference signal source. The calculating section calculates the distance based on a phase detection result obtained by reception of the first and second carrier signals and corrects the calculated distance based on information concerning an amplitude ratio of the first carrier signals received by the second transceiver.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: July 14, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yutaka Shimizu, Shoji Ootaka, Ichiro Seto, Katsuya Nonin
  • Patent number: 10644913
    Abstract: A carrier leakage correction method for a quadrature modulator according to an embodiment includes inputting a test signal with a frequency fBB to a transmitter and up-converting the test signal with a frequency fL0 and down-converting with the frequency fL0. A frequency 2fBB component is detected in the down-converted test signal. One or a plurality of parameters of the transmitter is/are adjusted so as to reduce a magnitude of the detected frequency 2fBB component in the test signal.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: May 5, 2020
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventors: Yousuke Hagiwara, Shigehito Saigusa, Mitsuyuki Ashida, Yuki Fujimura, Ichiro Seto
  • Patent number: 10419136
    Abstract: According to an embodiment, a communication device includes a phase-shifting circuit that shifts a phase of a local signal and supplies it to an orthogonal demodulator. The phase-shifting circuit includes first and second signal input ends that are supplied with an output signal of a local oscillator between both ends thereof, a frequency divider that has first and second input ends, and a switching part that is provided between the first and second signal input ends and the first and second input ends of the frequency divider and switches connection between the first and second signal input ends and the first and second input ends of the frequency divider.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: September 17, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yousuke Hagiwara, Yuki Fujimura, Hiroyuki Kobayashi, Ichiro Seto, Shigehito Saigusa
  • Publication number: 20190158325
    Abstract: A carrier leakage correction method for a quadrature modulator according to an embodiment includes inputting a test signal with a frequency fBB to a transmitter and up-converting the test signal with a frequency fL0 and down-converting with the frequency fL0. A frequency 2fBB component is detected in the down-converted test signal. One or a plurality of parameters of the transmitter is/are adjusted so as to reduce a magnitude of the detected frequency 2fBB component in the test signal.
    Type: Application
    Filed: January 23, 2019
    Publication date: May 23, 2019
    Inventors: Yousuke Hagiwara, Shigehito Saigusa, Mitsuyuki Ashida, Yuki Fujimura, Ichiro Seto
  • Publication number: 20190097851
    Abstract: A carrier leakage correction method for a quadrature modulator according to an embodiment includes inputting a test signal with a frequency fBB to a transmitter and up-converting the test signal with a frequency fL0 and down-converting with the frequency fL0. A frequency 2fBB component is detected in the down-converted test signal. One or a plurality of parameters of the transmitter is/are adjusted so as to reduce a magnitude of the detected frequency 2fBB component in the test signal.
    Type: Application
    Filed: February 21, 2018
    Publication date: March 28, 2019
    Inventors: Yousuke Hagiwara, Shigehito Saigusa, Mitsuyuki Ashida, Yuki Fujimura, Ichiro Seto
  • Patent number: 10243771
    Abstract: An orthogonal frequency division multiplexing (OFDM) signal transmission apparatus which transmits OFDM signals by using a plurality of transmission antennas includes a subcarrier setting device which sets signals for subcarriers so as to use some of the subcarriers of the OFDM signals as pilot subcarriers to transmit pilot signals and use the remaining subcarriers as data subcarriers to transmit data signals, the subcarrier setting device changing polarities of signals for the pilot subcarriers for each transmission antenna.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: March 26, 2019
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tsuguhide Aoki, Ichiro Seto, Daisuke Takeda, Takehiko Toyoda, Ren Sakata
  • Patent number: 10225118
    Abstract: A carrier leakage correction method for a quadrature modulator according to an embodiment includes inputting a test signal with a frequency fBB to a transmitter and up-converting the test signal with a frequency fL0 and down-converting with the frequency fL0. A frequency 2fBB component is detected in the down-converted test signal. One or a plurality of parameters of the transmitter is/are adjusted so as to reduce a magnitude of the detected frequency 2fBB component in the test signal.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: March 5, 2019
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventors: Yousuke Hagiwara, Shigehito Saigusa, Mitsuyuki Ashida, Yuki Fujimura, Ichiro Seto
  • Publication number: 20180267154
    Abstract: A distance measuring device includes a calculating section configured to calculate, based on phase information acquired by a first device and a second device, at least one of which is movable, a distance between the first device and the second device. The first device includes a first reference signal source and a first transceiver configured to transmit two or more first carrier signals and receives two or more second carrier signals using an output of the first reference signal source. The second device includes a second reference signal source configured to operate independently from the first reference signal source and a second transceiver configured to transmit the second carrier signals and receives the first carrier signals using an output of the second reference signal source. The calculating section calculates the distance based on a phase detection result obtained by reception of the first and second carrier signals.
    Type: Application
    Filed: September 15, 2017
    Publication date: September 20, 2018
    Inventors: Shoji Ootaka, Yutaka Shimizu, Ichiro Seto, Yoshiharu Nito, Masaki Nishikawa, Takayuki Kato, Shigeyasu Iwata, Katsuya Nonin
  • Publication number: 20180267155
    Abstract: A distance measuring device includes a calculating section that calculates, based on phase information acquired by a first device and a second device, at least one of which is movable, a distance between the first device and the second device. The first device includes a first transceiver that transmits three or more first carrier signals and receives three or more second carrier signals using an output of a first reference signal source. The second device includes a second transceiver that transmits the three or more second carrier signals and receives the three or more first carrier signals using an output of a second reference signal source. The calculating section calculates the distance based on a phase detection result obtained by reception of the first and second carrier signals and corrects the calculated distance based on information concerning an amplitude ratio of the first carrier signals received by the second transceiver.
    Type: Application
    Filed: September 15, 2017
    Publication date: September 20, 2018
    Inventors: Yutaka Shimizu, Shoji Ootaka, Ichiro Seto, Katsuya Nonin
  • Patent number: 10069670
    Abstract: A transmission and reception circuit includes a transmission circuit, a reception circuit, and a signal feedback path. The transmission path includes an output section, a signal generating circuit generating an in-phase component signal and an orthogonal component signal, and a transmission analog baseband circuit configured to perform digital to analog conversion of the generated in-phase component signal and orthogonal component signal. The reception circuit includes an input section, a reception analog baseband circuit performing analog to digital conversion of the transmitted in-phase component signal and orthogonal component signal, and a signal detection circuit that detects the analog-to-digital converted in-phase component signal and orthogonal component signal converted by the reception analog baseband circuit.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: September 4, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shigehito Saigusa, Yousuke Hagiwara, Toshiyuki Yamagishi, Hiroshi Yoshida, Ichiro Seto
  • Publication number: 20180183531
    Abstract: According to an embodiment, a communication device includes a phase-shifting circuit that shifts a phase of a local signal and supplies it to an orthogonal demodulator. The phase-shifting circuit includes first and second signal input ends that are supplied with an output signal of a local oscillator between both ends thereof, a frequency divider that has first and second input ends, and a switching part that is provided between the first and second signal input ends and the first and second input ends of the frequency divider and switches connection between the first and second signal input ends and the first and second input ends of the frequency divider.
    Type: Application
    Filed: September 11, 2017
    Publication date: June 28, 2018
    Inventors: Yousuke Hagiwara, Yuki Fujimura, Hiroyuki Kobayashi, Ichiro Seto, Shigehito Saigusa
  • Publication number: 20180083823
    Abstract: A transmission and reception circuit includes a transmission circuit, a reception circuit, and a signal feedback path. The transmission path includes an output section, a signal generating circuit generating an in-phase component signal and an orthogonal component signal, and a transmission analog baseband circuit configured to perform digital to analog conversion of the generated in-phase component signal and orthogonal component signal. The reception circuit includes an input section, a reception analog baseband circuit performing analog to digital conversion of the transmitted in-phase component signal and orthogonal component signal, and a signal detection circuit that detects the analog-to-digital converted in-phase component signal and orthogonal component signal converted by the reception analog baseband circuit.
    Type: Application
    Filed: March 1, 2017
    Publication date: March 22, 2018
    Inventors: Shigehito SAIGUSA, Yousuke HAGIWARA, Toshiyuki YAMAGISHI, Hiroshi YOSHIDA, Ichiro SETO
  • Patent number: 9923744
    Abstract: An orthogonal frequency division multiplexing (OFDM) signal transmission apparatus which transmits OFDM signals by using a plurality of transmission antennas includes a subcarrier setting device which sets signals for subcarriers so as to use some of the subcarriers of the OFDM signals as pilot subcarriers to transmit pilot signals and use the remaining subcarriers as data subcarriers to transmit data signals, the subcarrier setting device changing polarities of signals for the pilot subcarriers for each transmission antenna.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: March 20, 2018
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tsuguhide Aoki, Ichiro Seto, Daisuke Takeda, Takehiko Toyoda, Ren Sakata